Автоматический секционный выключатель: Шкафы АВР с секционным выключателем

Содержание

Шкафы АВР с секционным выключателем


Компания ПромЭлектроСервис НКУ — сертифицированный производитель электрощитового оборудования 10/6/0,4кВ. В нашем распоряжении — 3 производственных площадки в Санкт-Петербурге (более 1600м2), большой штат инженеров и монтажников. Мы предлагаем вам конкурентные цены, высокое качество электрощитов и оперативные сроки поставки.

Контакты для связи

Шкафы автоматического ввода резерва АВР с секционированием — один из ключевых элементов в системах электроснабжения 1й категории надежности. В качестве алгоритмов переключения в АВР с секционированием используются схемы 2 в 2; 3 в 2; 3 в 3, когда происходит одновременное запитывание двух или трех секций шин через автоматы QF1, QF2, QF3 и др. В качестве питающих вводов могут быть использованы электросети, дизельные электростанции, или источники бесперебойного питания. Системы АВР с секционированием часто используются при производстве главных распределительных щитов ГРЩ АВР, и шкафов РУНН 0,4кВ. Более подробно о шкафах ГРЩ.



Шкаф АВР с секционированием на базе реле Zelio Logic Schneider Electric БУАВР на базе реле Siemens Logo БУАВР для ГРЩ 400А с секционированием на базе реле Zelio и РНПП311М Новатек Электро

В качестве переключающего элемента в щитах АВР с секционированием используется секционные автоматические выключатели, к которому одновременно подключаются две секции сборных шин. В нормальном режиме работы каждый из подключенных к АВР потребителей получает питание от своей секции, при этом секционный выключатель находится в выключенном состоянии. При исчезновении напряжения на первой секции происходит срабатывание автоматики, взвод пружины секционного выключателя и перевод нагрузки с первого ввода на работающую вторую. При восстановлении напряжения на первом вводе секционный выключатель отключится,  автоматический выключатель первого ввода включится и восстановится нормальное рабочее состояние АВР. При пропадании напряжения на втором вводе, алгоритм повторится в том же порядке.

В отличие от стандартных щитов АВР на 2 ввода по схеме 2 в 1 или АВР на 3 ввода (3 в 1) с релейной логикой управления шкафы АВР с секционированием имеют более сложную логику работу, где должны соблюдаться следущие параметры защиты и блокировок:

  • Защита от ложного срабатывания секционного выключателя при кратковременной просадке напряжения
  • Защита от одновременного включения всех автоматических выключателей
  • Выбор приоритетных нагрузок
  • Блокировка БУАВР при авариях и неисправностях

Для этих целей обычно используют микропроцессорные блоки управления АВР с предустановленными настройками. К таким блокам можно отнести АВР ATS ABB, Siemens Logo. При производстве шкафов АВР с секционированием мы обычно используем более бюджетные и проверенные временем программируемые реле Zelio Logic от Schneieder Electric в комбинации с трехфазными реле напряжения/контроля фаз. 

Использование программируемого реле Zelio Logic в АВР обеспечивает:

  • Включение/отключение автоматических выключателей в АВР по заданному алгоритму
  • Контроль состояния автоматов
  • Регулировку временных уставок на переключение автоматов при авариях
  • Возможность интеграции в систему диспетчеризации по GSM, Bluetooth, Internet, Modbus связи
  • Возможность изменения схемы переключения БУАВР в процессе работы

Алгоритм работы блока управления АВР два ввода с секционированием на примере схемы 2 в 2, электросеть/электросеть

Схема авр два ввода 2 в 2 с секционированием

При нарушении стандартных параметров питания на вводе №1 изменится положение контактов реле контроля фаз/напряжения KV1. После выдержки времени подается команда на отключение автомата QF1 и на включение секционного автомата QF3 с выдержкой времени. Для этого должны дыть выполнены следующие условия:

  1. Отключен автомат QF1 (секция 1)
  2. Уровень напряжения на секции 1 меньше, чем заданная пользователем уставка
  3. На вводе соседней секции напряжение находится в рамках допустимых границ
  4. Отсутствие аварии блока БУАВР
  5. БУАВР работает в автоматическом режиме (переключатель SA1-Авт)

Происходит включение секционника, и запитывание обесточенной секции №1 от автомата QF3

При восстановлении питания на вводе №1, после выдержки времени произойдет отключение секционного выключателя QF3 и сформируется команда на запуск выключателя QF1. Нормальное электроснабжение объекта восстановлено.

По требованию Заказчика возможно применить схему АВР на контакторах с секционированием. Такие требования можно встретить в документации к ГРЩ.

 

Схема секционного авр на 2 ввода (+ дизель-генераторная установка)

Фото шкафов АВР с секционированием в сборе производства компании ПромЭлектроСервис НКУ

Щит АВР ЩАВР 400А 2 ввода с секционным выключателем на комплектующих Chint (+ реле Zelio Logic) для электроснабжения строящейся котельной в Ленинрадской области

 

Шкаф АВР 250А 2 ввода с секционным автоматом на базе комплектующих Schneider Electric (корпус Prisma P, реле Zelio Logic, автоматы Compact NSX с моторными приводами, реле контроля фаз RM17TG, модульные автоматы ic60n)

   

ГРЩ 400А с АВР и секционированием на базе оборудования IEK и DEKraft

 

  

Щит АВР 63А 2 ввода (сеть/сеть) с секционным выключателем, отходящими линиями и блоком управления насосом. Корпус Prisma P, ПЛК ZELIO Logic, автоматы Compact NSX, реле контроля фаз RM17TG

   

 

Секционный АВР и его особенности.


Современные системы электрического снабжения защищены от многих внешних факторов и ситуаций, но ни один производитель не может гарантировать 100% защиту. Поэтому желательно использовать два источника питания, один из которых (резервный) начинает работать при отключении основного. Для этого система должна «считывать» и контролировать ток нагрузки и проходящее по проводам напряжение, чтобы в нужный момент автоматически переключиться на аварийный режим. Именно это и делает АВР – автоматический ввод резерва.


Для чего используется?


В частных или многоквартирных домах такая система используется редко, а вот в городской электросети или на промышленных предприятиях без нее никуда. Отключение электрики даже на короткое время чревато большими материальными потерями, поэтому необходимо обеспечить бесперебойную работу цепей напряжения до устранения поломки. АВР помогает в считанные минуты возобновить подачу электрической энергии и при этом пользователю ничего не нужно делать.


Крупные фирмы и предприятия уже давно устанавливают минимум два ввода на две секции распределительных приборов. Их между собой разделяет секционный выключатель и обе секции функционируют автономно друг от друга. Для потребителей первой категории – это обязательная мера предосторожности, которая прописана в ПУЭ.


Время срабатывания резерва зависит от модели прибора, качества сборки деталей, производителя и марки. Но в идеале оно должно быть от 3 до 8 секунд. Необходимость АВР проще доказать на примере. Допустим, есть важный охраняемый объект, который всегда должен быть освещен. По разным причинам основной источник питания может дать сбой. Тогда автоматически начинает действовать ввод резерва и при этом свет не будет отключен даже на минуту, освещение лишь станет немного более тусклым на 8 секунд до срабатывания аппарата.


Принцип работы.


Какая бы ни была конструкция автоматического ввода, ее главная задача – контроль напряжения. Он может осуществляться двумя способами: цифровой блок защиты или реле напряжения. Но в любом из вариантов сама схема работы одинакова. Ее проще объяснить на примере.


Есть две рабочие линии А (основная) и В (резервная). Также у нас есть К – катушка реле и Л – лампа индикатора напряжения. При нормальных режимах ток проходит через катушку реле и лампу. Нормально-разомкнутые и нормально-замкнутые контакты функционируют по своей основной схеме, подавая напряжение на основную линию А. Но если на входе А ток пропадает, обе группы контактов возвращаются в исходное положение. Катушка прекращает свою работу и лампочка гаснет. Тогда срабатывает механизм защиты и замыкается контакт линии В, что приводит к возобновлению подачи электроэнергии. Как только неполадка будет устранена, К1 перекоммутирует все к исходному состоянию, то есть на линию А.


Классификация.


По своему устройству АВР могут быть:


Односторонние. В данном случае предусмотрено два ввода, один из которых главный, а другой – дополнительный.

Двухсторонние. Также два ввода, но оба используются в качестве основных источников питания.


В первом варианте в конструкции предусмотрена возможность переключения от одного источника к другому, а во втором она отсутствует, поскольку оба имеют одинаковый приоритет.


АВР на аккумуляторах.


Рынок электроники постоянно совершенствуется и сейчас в качестве резервного источника можно использовать даже аккумулятор транспортного средства. Но для этого нужно прикупить еще и инвертор, который будет преобразовывать постоянное напряжение в переменное. Конечно, для силовых цепей такой мощности маловато. Но вот при неожиданных отключениях осветительных линий такая схема вполне может обеспечить стабильное напряжение на время аварии. Но учитывайте, что аккумуляторы малой мощности помогут только на короткое время.


Логический контроллер.


Применяется для трехфазных сетей и учитывает практически все параметры сети, для создания совершенной системы. Это уже готовый блок, в конструкцию которого вмонтирован цифровой контроллер. Именно он и «считывает» все необходимые данные. Преимущество в том, что на корпусе очень подробная маркировка. Кроме того в комплекцию включена инструкция, разъясняющая как правильно подключать и отключать аппарат.


Но тут нужно подумать, есть ли смысл в покупке модуля. Подключить его к трехфазной сети, которая питается от одного трансформатора не очень целесообразно. Только если имеется дополнительный мощный резервный источник питания.


Бесконтакторные системы.


Еще одно чудо техники, в котором для управления используется микропроцессорный блок. Переключение выполняют полупроводниковые коммутаторы, которые считаются более быстрыми и надежными, чем контакторы. Это идеальный модуль для тех, кто не любит возиться с проводами, поскольку в конструкции не предусмотрены механические контакты. А значит, не нужно проводить механическую блокировку. У таких аппаратов множество функций, которые расширяют возможности управления. И всего один недостаток: сложный ремонт, который потребует не только вмешательства электрика, но и помощи программиста.


Особенности АВР в высоковольтных цепях.


На первый взгляд схема может показаться сложной, но это из-за необходимости использования дополнительного оборудования. В цепях с напряжением, превышающим 1000 Вольт необходимо использовать трансформатор напряжения. Он будет контролировать и измерять сетевую энергию. На вторичной обмотке такого механизма напряжение в 100 Вольт (при нормальной работе). Чтобы связать его с автоматическим вводом, необходимо реле контроля фаз. Оно среагирует и на понижение электрической энергии, и на обрыв любой из фаз.


Важно: такую схему можно реализовать только на новейшем оборудовании (многофункциональные терминалы защиты) или на механических реле старого образца.

Для чего нужен секционный выключатель

Секционный выключатель

Секционные выключатели , включенные последовательно с реактором, должны быть выбраны и проверены по условиям короткого замыкания на участке между выключателями и реактором. [2]

Секционные выключатели , включенные последовательно с реакторами, должны быть рассчитаны на отключение КЗ на участке между выключателем и реактором. [4]

Секционный выключатель срабатывает автоматически при авариях о одним из трансформаторов или при понижении нагрузки на подстанции до значения, при котором для уменьшения потерь выгодно перейти на работу с одним трансформатором. [6]

Секционный выключатель СВ1 включен, все секционные автоматы С А и неавтоматические выключатели в сети 0 4 отключены. При выходе из строя одного из генераторов мощностью 630 — 1000 кВт его нагрузку принимает ПАЭС. При выходе из строя ПАЭС автоматика быстрой разгрузки отключает всю неответственную нагрузку и АВО газа, а генераторы продолжают работать на цех. [7]

Секционный выключатель имеет следующие устройства РЗА: 1.1. МТЗ с выдержкой времени, МТЗ ускоренная. При срабатывании защиты отключается секционный выключатель, на дисплее появляются сообщения МТЗ, УРОВ, загорается сигнал Вызов, происходит запрет включения. Если работа защиты происходит при отключенном выключателе, то она без выдержки времени запускает УРОВ на отключение смежной секции шин. [8]

Секционный выключатель С при нормальных условиях разомкнут и включается при исчезновении напряжения на одной из секций шин. В случае исчезновения напряжения на / секции шин реле / Я замыкает свои контакты и дает питание катушке реле 1В от трансформатора напряжения, установленного на / / секции. Когда выключатель 1Л отключается, его размыкающие блок-контакты дают питание включающей катушке KB ( или контактору, включающему электромагнитный привод), и выключатель С включается. [9]

Секционный выключатель 5В нормально отключен и включается под действием средств АВР при отключении любого рабочего трансформатора. [11]

Секционные выключатели , выключатели ремонтных участков троллеев и аппараты, устанавливаемые на питающих линиях с указанием типа и основных технических данных. [12]

Секционные выключатели применяются в сборных шинах. В распределительных устройствах ( РУ) станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически отключаться только при повреждении в зоне сборных шин. Вместе с ними должны отключаться и другие выключатели поврежденной секции. Таким образом, поврежденная секция РУ будет отключена, а остальная часть останется в работе. [13]

Секционные выключатели , включенные последовательно с реакторами, должны быть рассчитаны на отключение к. [15]

В РУ с двумя системами сборных шин каждое присоединение содержит выключатель и 2 ШР, которые служат для изоляции выключателей от сборных шин при их ремонте, а также при переключении с одной системы сборных шин на другую без перерыва в их работе.

ЛР – линейный разъединитель

ШСВ – шиносоединительный выключатель

ЛР стоят для безопасного ремонта выключателей линий передач W1 и W2. Обе системы сборных шин являются рабочими. Источники и нагрузка равномерно распределяются между шинами разъединителями. Обычно QA нормально замкнут, иногда он нормально разомкнут для ограничения тока КЗ.

Переключение присоединений с одной шины на другую производится шинными разъединиителями — ШР. Операции разъединителями допускаются, если цепь отключена выключателем или разъединитель шунтирован ветвью с малым сопротивлением.

Все ШР шунтированы через сборные шины ШСВ. В этих условиях можно включить в любом присоединении разъединитель одной системы и отключить разъединитель другой системы. При переключениях ток присоединения перемещается из одного ШР в другой. При разомкнутом ШСВ недопустимы. Во избежание случайного отключения ШСВ, ПТЭ требует отключить цепь отключающего электромагнитного выключателя QA.

Во избежание неправильных операций с ШР предусматривают блокирующие устройства, запрещающие операции с ШР.

Возможность поочередного ремонта сборных шин без перерыва работы присоединений

Возможность деления системы на две части с целью повышения надежности

Возможность ограничения токов КЗ в сети, но при этом QA отключен.

При ремонте одной из систем шин нарушается нормальная работа РУ  снижается надежность на время ремонта

При КЗ в QA нарушается нормальная работа обоих систем сборных шин

В случае внешнего КЗ и отказе выключателя этого присоединения отключается вся система шин

Ремонт выключателя и ЛР связан с отключением на время ремонта данного присоединения

Частые переключения с помощью разъединителей увеличивают вероятность повреждения в зоне сборных шин по сравнению с одной системой сборных шин при том же числе присоединений

Недостатки частично устраняются путем усложнения и удорожания схемы. Чтобы обеспечить возможность поочередного ремонта выключателей без перерыва в работе предусматривают обходную систему шин и обходной выключатель. При большом числе присоединений используют секционирование сборных шин.

Лекция 10 Схемы с обходной системой шин

Секционирование производится с помощью нормально замкнутых выключателей и предусматривает 2 шиносоединительных и 2 обходных выключателя. Если на РУ более 8 присоединений, то их надо распределить на 2 секции. (Рис.10.1.)

QA – ШСВ (шиносоединительный выключитель)

ОВ – обходной выключатель

QB – секционный выключатель

ШР – шинный разъединитель

Схема должна быть симметричной.

Линия W1 подключается в какой-либо из двух систем шин, т.е. один ШР замкнут, а второй ШР разомкнут. При КЗ на секции, эта секция отключается секционным выключателем и шиносоединительным выключателями. В России больше 2-х систем шин не применятеся.

В такой схеме можно уменьшить число выключателей, объединив функции обходных и шиносоединительных выключателей. При двух секциях необходимо 2 выключателя QA1 и QA2 с совмещенными функциями ОВ и ШСВ.

СР – секционный разъединитель

При нормальной работе на двух системах сборных шин QS2 отключен, а QS5, QS8 и QS1 включены. Выключатель QА1 включен, он выполняет в нормальном режиме функции ШСВ.

В случае ремонта выключателя Q1, который был присоединен к СШ1 (т.е. QS3 – включен, QS4 – отключен) необходимо отключить QA1 и QS5, включить обходной разъединитель QS7. После этого надо включить выключатель QA1. На какое-то время блок включается через 2 параллельные ветви. Затем отключаем Q1, QS5, QS6, включаем заземляющие ножи и можно приступать к ремонту Q1, после окончания которого схему требуется привести в исходное состояние.

Такие схемы РУ (с 2 системами СШ и ОСШ) применяются на напряжения 110-220 кВ и большом числе подключений.

Секционные автоматические выключатели предназначены для включения резервного питания в распределительных устройствах низкого напряжения, для осуществления подключения резервного питания на ТП. Также они используются для поддержания подключения между работающими генераторами на электростанциях, но данный тип подключения используется только на подобных объектах. Основное применение они нашли именно в РУ для низкого напряжения. Также может применяться в быту, для переключения питания от сетевого ввода на запасное питание от генератора.

Рабочая схема выключателя следующая: с двух источников питания (основного и резервного) подводятся линии передачи тока на выключатель. Обе линии контролируются выключателем на наличие напряжения трансформаторами тока.

При отключении основной линии трансформатор реагирует на отсутствие питания, и через систему реле и исполнительных механизмов поступает сигнал на перемещение контактов выключателя на резервную линию. Переключение происходит с небольшой задержкой по времени. Как только питание на основном вводе восстанавливается, выключатель реагирует и возвращается в основное положение, отключая резервный ввод.

При установке данного выключателя линия должна быть оборудованной дополнительным автоматическим силовым выключателем на вводе. Устройство необходимо, чтобы исключить возможность автоматического переключения ввода в ячейке при ее ремонте, обслуживании. Порядок выключения следующий: выключается силовой автомат, после него должен среагировать секционный. Ячейка готова к работе людей. Без вводного силового автомата устанавливать секционный выключатель запрещено.

Секционные автоматические выключатели являются обычно частью устройств АВР – автоматического ввода резерва. Но небольшие выключатели можно использовать и как устройства управления, встраивая их в технологические процессы.

Для промышленных потребителей на устройствах ввода (РУ ТП) можно встретить подобные автоматы с функцией переключения с одного ввода на другой с массой дополнительных опций по контролю, управлению и программированию данных устройств. В случае возникновения аварийной ситуации эти выключатели работают как измерительные комплексы, способные оценить причину аварии, отследить параметры сработки, сигнализировать оператору о других состояниях сети в их рабочей зоне. Одно из преимуществ – возможность программирования на переключение на резервные линии или другие вводы при необходимости.

Назначение электрического оборудования распределительных устройств



Рис.1. Однолинейная схема электростанции средней мощности с РУ 10 и 110 кВ:

G — генератор; Т — трансформатор; Q — выключатель;

QB — выключатель секционный; QS — разъединитель;

LR — токоограничивающий реактор; F — разрядник;

W — линия электропередачи

Назначение электрического оборудования первичных цепей

Назначение аппаратов и других элементов РУ удобно рассмотреть применительно к схеме конкретной установки (рис.1). Как видно из схемы, в каждом присоединении предусмотрены выключатели и соответствующие разъединители.

Выключатели

Выключатели Q являются важнейшими коммутационными аппаратами. Они предназначены для включения, отключения и повторного включения электрических присоединений. Эти операции выключатели должны совершать в нормальном режиме, а также при коротких замыканиях (КЗ), когда ток превосходит нормальное значение в десятки и сотни раз. Выключатели снабжены приводами для неавтоматического и автоматического управления. Под неавтоматической операцией включения или отключения понимают операцию, совершаемую человеком, который замыкает цепь управления привода выключателя особым ключом обычно на расстоянии, т.е. дистанционно. Автоматическое включение и отключение происходит без вмешательства человека с помощью автоматических устройств, замыкающих те же цепи управления.

Выключатели предусмотрены также в сборных шинах. Эти выключатели называют секционными QB. В РУ станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически размыкаться только в случае повреждения в зоне сборных шин. Вместе с ними должны размыкаться и другие выключатели поврежденной секции. Таким образом поврежденная часть РУ будет отключена, а остальная часть останется в работе.

При наличии достаточного резерва в источниках энергии и линиях электроснабжение не будет нарушено.

Разъединители

Разъединители QS имеют основное назначение — изолировать (отделять) на время ремонта в целях безопасности электрические машины, трансформаторы, линии, аппараты и другие элементы системы от смежных частей, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе, например токе намагничивания небольшого трансформатора или емкостном токе непротяженной линии.

В отличие от выключателей разъединители в отключенном положении образуют видимый разрыв цепи. Как правило, их снабжают приводами для ручного управления. Операции с разъединителями и выключателями должны производиться в строго определенном порядке. При отключении цепи необходимо сначала отключить выключатель и после этого отключить разъединители, предварительно убедившись в том, что выключатель отключен. При включении цепи операции с выключателем и разъединителями должны быть выполнены в обратном порядке. Таким образом, замыкание и размыкание цепи с током совершает выключатель. Разъединители образуют дополнительные изолирующие промежутки в цепи, предварительно отключенной выключателем.

Разъединители размещают так, чтобы любой аппарат или любая часть РУ могли быть изолированы для безопасного доступа и ремонта. Так, например, в каждой линейной цепи должны быть предусмотрены два разъединителя — шинный или линейный, с помощью которых выключатели могут быть изолированы от сборных шин и от сети. В цепи генератора достаточно иметь только шинный разъединитель, обеспечивающий безопасный ремонт генератора и выключателя; при этом генератор должен быть отключен и остановлен. Для ремонта двухобмоточных трансформаторов и соответствующих выключателей достаточно иметь шинные разъединители со стороны высшего и низшего напряжений.

Заземляющие устройства

Для безопасной работы в РУ и в сети недостаточно изолировать рабочее место от смежных частей, находящихся под напряжением. Необходимо также заземлить участок системы, подлежащий ремонту. Для этого у разъединителей предусматривают заземляющие ножи, с помощью которых участок, изолированный для ремонта, может быть заземлен с обеих сторон, т.е. соединен с заземляющим устройством установки, потенциал которого близок к нулю. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Их включают при подготовке рабочего места для ремонта после отключения выключателей и разъединителей и проверки отсутствия напряжения.

Использование разъединителей не ограничивается изоляцией отключенных частей системы в целях безопасности при ремонтах. В РУ с двумя системами сборных шин разъединители используют также для переключений присоединений с одной системы сборных шин на другую без разрыва тока в цепях.

Токоограничивающие реакторы

Токоограничивающие реакторы LR представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы линейные и секционные.

Измерительные трансформаторы тока

Измерительные трансформаторы тока ТА предназначены для преобразования тока до значений, удобных для измерений. В присоединениях генераторов, силовых трансформаторов, линий со сложными видами защиты необходимы два-три комплекта трансформаторов тока.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения TV предназначены для преобразования напряжения до значений, удобных для измерений. Трансформаторы напряжения присоединяют к сборным шинам станций; их предусматривают также в присоединениях генераторов, трансформаторов и линий.

На принципиальных схемах измерительные трансформаторы обычно не показывают.

Вентильные разрядники

Вентильные разрядники F, а также ограничители перенапряжений предназначены для защиты изоляции электрического оборудования от атмосферных перенапряжений. Они должны быть установлены у трансформаторов, а также у вводов воздушных линий в РУ.

Токопроводы

Токопроводы представляют собой относительно короткие электрические линии (как правило, от нескольких метров до нескольких сотен метров) с жесткими или гибкими проводниками, укрепленными на опорных или подвесных изоляторах, предназначенные для соединения электрических машин, трансформаторов и электрических аппаратов в пределах станции, подстанции, распределительного устройства.

Требования, предъявляемые к электрическому оборудованию и токопроводам

Требования, предъявляемые к электрическому оборудованию и токопроводам, заключаются в следующем.

  • Изоляция оборудования должна обладать достаточной электрической прочностью, чтобы противостоять наибольшему рабочему напряжению, а также коммутационным и атмосферным перенапряжениям.
  • Оборудование и проводники должны:
    • проводить в течение неограниченного времени наибольшие рабочие токи соответствующих присоединений; при этом температура в наиболее нагретых точках не должна превышать нормированные значения для продолжительного режима;
    • выдерживать тепловое и механическое действия токов КЗ, т.е. обладать достаточной термической и электродинамической стойкостью;
    • быть экономичными и надежными в эксплуатации, т.е. вероятность повреждений должна быть мала, а требования к уходу и ремонту минимальными;
    • быть безопасными для лиц, обслуживающих установку.

Кроме перечисленных общих требований, к электрическому оборудованию предъявляют ряд частных требований в соответствии с назначением и условиями работы оборудования.

Номинальные параметры электрического оборудования — это параметры, определяющие свойства электрического оборудования, например номинальное напряжение, номинальный ток и многие другие. Номинальные параметры назначают заводы-изготовители. Они указываются в каталогах, справочниках, на щитках оборудования. При проектировании установки и выборе оборудования номинальные параметры сопоставляют с соответствующими расчетными значениями напряжений и токов, чтобы убедиться в пригодности оборудования для работы в нормальных и анормальных условиях. Ограничимся здесь лишь определением понятия номинального напряжения электрической сети и электрического оборудования.

Номинальное напряжение — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы:

Номинальное междуфазное напряжение, действующее значение, кВ… 3..6..10..20..35..110

Наибольшее рабочее напряжение, действующее значение, кВ… 3,5..6,9..11,5..23..40,5

Номинальное междуфазное напряжение. действующее значение, кВ… 150..220..330..500..750..1150

Наибольшее рабочее напряжение, действующее значение, кВ… 172..252..363..525..787..1210

Для сетей с номинальным напряжением 220 кВ включительно наибольшее рабочее напряжение принято равным 1,15 номинального; для сетей с номинальным напряжением 330 кВ — 1,1 номинального и для сетей 500 кВ и выше — 1,05 номинального. Электрическое оборудование должно быть рассчитано на продолжительную работу при указанных напряжениях.

Изоляция электрического оборудования должна также противостоять перенапряжениям, т.е. кратковременному действию напряжений, превышающих наибольшее рабочее напряжение. Различают перенапряжения коммутационные и атмосферные.




Аппараты вторичных цепей. Релейная защита и элементы системной автоматики

Автоматические устройства, в частности релейная защита, необходимы там, где требуется быстрая реакция на изменение режима работы и немедленная команда на отключение или включение соответствующих цепей. Так, например, при КЗ, когда ток в ряде цепей резко увеличивается, необходимо немедленно отключить поврежденный участок системы, чтобы но возможности уменьшить размеры разрушения и не помешать работе смежных неповрежденных цепей. Такая команда может быть подана только автоматическим устройством, реагирующим на изменение тока, направление мощности и другие факторы и замыкающим цепи управления соответствующих выключателей.

Автоматическое отключение элементов системы, должно быть избирательным (селективным). Это означает, что в случае повреждения в любой цени отключению подлежит только поврежденная цепь ближайшими к месту повреждения выключателями. Работа остальной части системы не должна быть нарушена. Так, например, при замыкании в точке К1 (рис.2) ток проходит по цепям генераторов, повышающих трансформаторов, поврежденной и неповрежденной линий. Однако отключению подлежит только поврежденная линия с обеих сторон. Связь станции с системой сохранится по другой линии.

В случае повреждения генератора или трансформатора отключению подлежит только поврежденный элемент. На рис.2 участки системы, подлежащие отключению в случае их повреждения, разграничены пунктирными линиями. Каждый участок отключается одним или двумя выключателями. В случае повреждения выключателя отключению подлежат два смежных участка.

Рис.2. Электрическая схема станции и участка сети

Пунктирные линии разграничивают участки станции и сети,
подлежащие отключению в случае их повреждения

Избирательность релейной защиты обеспечивают различными способами, например соответствующим выбором времени или тока срабатывания защит смежных участков сети, применением реле, реагирующих на направление мощности, и др.

Время отключения цепи при КЗ слагается из времени срабатывания релейной защиты и времени отключения выключателя, исчисляемого от момента подачи команды на отключение до момента погасания дуги в разрывах выключателя.

Время отключения основных линий системы стремятся по возможности уменьшить, чтобы не нарушить устойчивости параллельной работы электростанций. Время отключения новейших выключателей составляет два периода и время релейной защиты еще 0,5 периода. Полное время отключения составляет таким образом 2,5 периода. Для распределительных сетей 2,5-периодное отключение не требуется. Здесь применяют более простые защиты и менее быстродействующие выключатели, стоимость которых значительно ниже. Полное время отключения составляет несколько десятых долей секунды и более.

Автоматическое повторное включение

Автоматические устройства для повторного включения (АПВ) воздушных линий после отключения их защитой имеют назначение быстро восстановить работу линии после отключения. Эффективность повторного включения воздушных линий основана на том, что большая часть замыканий связана с грозовыми разрядами и приводит к перекрытию изоляторов по поверхности. После автоматического отключения линии электрическая прочность воздушного промежутка быстро восстанавливается и при повторном включении линия остается в работе.

Первоначально команда на повторное включение подавалась вручную дежурным на щите управления. Позднее операцию включения стали автоматизировать. В настоящее время автоматическое повторное включение, однократное и двукратное, получило широкое применение. Оно способствует повышению надежности электроснабжения, в особенности при питании потребителей по одиночным линиям.

Полное время автоматического повторного включения исчисляется от подачи команды релейной защиты на отключение выключателя до повторного замыкания его контактов. Оно должно быть возможно малым, чтобы не нарушать работу потребителей, но в то же время достаточным для деионизации дугового промежутка в месте перекрытия. Время повторного включения зависит от напряжения сети и быстродействия выключателя. В устройствах двукратного повторного включения для первого включения выбирают минимальное время из условия деионизации дугового промежутка. Если первое включение оказывается неуспешным и линия отключается вновь, происходит второе включение с интервалом в несколько секунд.

Автоматический ввод резерва

Автоматические устройства для включении резервной цепи (АВР) должны автоматически включать резервный трансформатор или резервный агрегат взамен отключенного защитой, а также автоматически подключать секцию сборных шин (с соответствующей нагрузкой), потерявшую питание, к соседней секции, обеспеченной питанием, с целью быстрого восстановления электроснабжения. Перерыв в подаче энергии должен быть относительно невелик, не более 0,5 с, чтобы электродвигатели, потерявшие питание, не успели остановиться, а после восстановления питания могли быстро войти в нормальный режим работы.



просто о сложном. Часть IV

В предыдущих частях (1, 2, 3) были рассмотрены основные базовые схемы АВР. Теперь мы решили поделиться с вами схемой АВР с большой «заумью». Что это такое? – это «супер-навороченная» схема, которую пришлось разработать в силу «требований» заказчика. Они решили «сэкономить»,… а получили это решение. Причем, которое надо тщательно обслуживать, а то не будет работать или будет работать только в ручном режиме (В комплекте с увеличенным штатом электриков и их нелицеприятными комментариями)

Итак, схема приведена ниже. Идея, в общем, интересная и достаточно простая (на первый взгляд). Предложил мне это решение мой коллега.



 

Щит АВР имеет в своем составе два рубильника с мотор-приводом (S1,S2), секционный автоматический выключатель с мотор-приводом (QF) и две секции нагрузок. В общем, почти штатная схема «восьмерки», но… для трех вводов. 3-й ввод – это ДГУ большой мощности. (Вообще, номинальный ток по вводам – 1250 А). 1-й и 2-й вводы запитаны от разных секций ТП (от разных силовых трансформаторов).

 

* Главная особенность этой схемы в том, что 1-й и 2-й вводы в данном щите АВР не защищены вводными автоматическими выключателями. Автоматические выключатели есть вообще-то, но в РУ ТП, и в другом помещении, и без блок-контактов автоматического отключения. (Ну, когда выключатели «выбивают», то замыкаются / размыкаются именно эти блок-контакты и которые используют потом в релейке – это очень важные контакты! По ним можно судить об аварии на вводе).

  

Некоторые могут сказать: «Что тут особенного – схема проста, наоборот – экономия!». Тем не менее, как я говорил в прошлых статьях, есть штатные режимы работы и есть внештатные, которые наиболее проблемные. Вот это один из них… Но об этом позже, при рассмотрении режимов работы данного АВР.



** Вторая особенность (тоже главная) – здесь невозможно предусмотреть механические блокировки между секционным автоматическим выключателем и рубильниками. Только электрические и временные. Кстати, звездочки или астериски (*,**) – важные пункты, на которые я буду иногда ссылаться в тексте.

Штатные режимы работы

 

  • 1-й и 2-й вводы с номинальным напряжением, включены. Все ОК! Это штатное, нормальное положение. S1 перевелся в положение «1», S2 тоже в положение «1». QF – отключен. Каждая секция питается от своего ввода. ДГУ не работает (но всегда готов!).
  • 1-й ввод «пропал» — (вышел из установленного номинального режима). Это также штатное положение (режим резервирования – АВР от 2-го ввода). При этом должно произойти следующее — S1 переходит в положение «0»! Это обязательно! После этого, через выдержку времени, QF включается, S2 остается в положении «1» и, таким образом, 1-я секция запитывается от 2-го ввода. Причем, введена именно такая последовательность! Это как «Отче Наш»! Иначе будет сюрприз под названием «встречное включение», причем полное – 3-х фазное (если вдруг появится вновь напряжение 1-го ввода).

Поясню подробно или еще попугаю последствиями.

 

Например, S1 не перейдет в «0», а останется в положении «1». При этом включится QF. И напряжение со 2-го ввода поступит на низкую сторону силового трансформатора Тр1 ТП. Этого допустить нельзя, однозначно. (Ну, если в ТП предусмотрена защита от поступления обратного напряжения, то еще ничего. Но как я говорил ранее, у нас проблема с электриками, проблема с оборудованием – силовая часть работает, а вот защитная релейка не всегда, если она есть вообще!).

 

Восстановление состояния должно происходить строго в обратном порядке!

  • 1-й ввод восстановился. При этом, вначале, отключается QF и потом, через выдержку времени, S1 переходит в положение «1». Восстанавливается нормальная работа. При нарушении порядка переключений -> встречное включение между 1-м и 2-м вводами!
  • 2-й ввод «пропал». Все происходит аналогично рассмотренным в п.2). и в п.3).
  • Режим, когда «пропали» оба ввода, например, сразу. Это также штатный режим работы АВР – аварийный, но предусмотренный и заложенный в систему АВР.

При этом рубильники S1 и S2 должны перейти в состояние «0». QF также разомкнут, т.е отключен. В этом случае поступает сигнал на запуск ДГУ, которая запускается, выходит на нормальный режим работы и номинальное напряжение поступает на шины 3-го ввода.

  • Далее S1 и S2 одновременно переводятся в положение «2». При этом напряжение поступает одновременно на обе секции нагрузок. Режим восстановления 1-го ввода. Штатный режим восстановления АВР на работу от 1-го ввода.

Появляется нормальное напряжение на шинах 1-го ввода. При этом, S1 и S2 также переключаются в положение «0». Затем S1 переключается в положение «1» и, далее, включается секционный автоматический выключатель QF. Т.е. мы прошли частично режим работы п.3).

  • Режим восстановления 2-го ввода. Штатный режим восстановления АВР на работу от 2-го ввода (при работе ДГУ, после режима п.5).

Схема, в общем, симметрична – этим она хороша, но этим она и проблематична для блокировки QF, как при пропадании 1-го ввода, так и при пропадании 2-го ввода (**).

Выше были показаны и рассмотрены так называемые «штатные» режимы работы, предусмотренные для данной схемы. Но существуют, как я уже говорил – нештатные режимы работы, которые необходимо обязательно предусматривать для любых схем АВР! Эти все режимы необходимо прописывать в инструкциях, руководствах по эксплуатации.


Данные режимы могут быть «новостью» и неожиданным «открытием» для самих производителей, когда, например, звонят вам из службы эксплуатации и рассказывают, что ваш АВР выкинул неожиданный «фортель» и не переключился или переключился не так, как ожидали от него…


 
И тут начинаются поиски, мозговые штурмы – а что же произошло???! (при этом электрики уже восстановили нормальный режим работы АВР и он как бы опять нормально работает – это в лучшем случае. В худшем – они перешли в ручной режим работы или полуавтоматический***). Но факт зафиксировали и необходимо найти причину.

Рассмотрим далее полуавтоматический*** режим работы АВР и нештатные режимы, а также коснемся релейной схемы управления…

 

Но вот теперь можно добавить несколько строк на тему «Контроль, управление АВР». В последней части статьи о работе АВР (особенно последняя схема) я упоминал о сложностях в работе этой непростой схемы.


Были описаны штатные режимы работы – когда все работает как надо в различных вариациях. Но был предусмотрен полуавтоматический режим работы АВР…

 

Вообще, если рассматривать режимы работы (повторение – мать учения :) то мое мнение, что все схемы сложных щитовых с АВР должны иметь три основных режима работы:

  • автоматический (согласно логике работы данного АВР)
  • полуавтоматический

Автоматический режим был уже рассмотрен в последней статье. (т.е это полностью автоматический режим, когда АВР работает самостоятельно, без присутствия обслуживающего персонала).

 

Полуавтоматический – это когда обслуживающий персонал управляет системой АВР при помощи кнопок управления.

 


Ручной режим – это когда обслуживающий персонал управляет элементами коммутирующей части АВР «вручную». Т.е. непосредственно включая и отключая рубильники, автоматы.

Зачем это надо? Да, действительно, зачем?… На самом деле, это еще одна из степеней гибкости системы управления и ее надежности… Если отказал автоматический режим работы, но переключения необходимо произвести, то это возможно сделать кнопками. При этом с контроллером автоматического управления**** можно разобраться позже, не влияя на работу щита, или произвести его (контроллера) замену или вообще демонтировать.

 

Ну, а если произошел отказ или сбой напряжения оперативного питания, то возможно произвести коммутации непосредственно, вручную (Конечно же, при полном соблюдении правил безопасности, в соответствии с разработанной инструкцией для данного случая).

 

Вот теперь, после отступления, можно продолжить говорить о полуавтоматическом режиме.


При этом напряжение оперативного питания присутствует, автоматический режим отключен, но управление рубильниками производится кнопками «ВКЛ» — Положение «1» / Положение «2» и «ОТКЛ» – Положение «0». Для секционного автоматического выключателя здесь предусмотрены кнопки «ВКЛ» и «ОТКЛ». Да, еще при этом, работают электрические блокировки между коммутирующими устройствами.


Иными словами, все штатные режимы схемы АВР выполняются с помощью кнопок. Например, рубильники S1, S2 находятся в положении «1», секционный автомат отключен. Но пропал 1-й ввод и необходимо запитать 1-ю секцию от 2-го ввода.

  • Нажимаем кнопку «ОТКЛ» S1 – рубильник переключается в положение «0».
  • Нажимаем кнопку «ВКЛ.» секционного автомата QF, который включается.

И, вуаля! – 1-я секция запитана от 2-го ввода. Аналогично можно произвести те же действия при пропадании 2-го ввода из начального состояния.


Восстановление основного режима работы происходит строго в обратном порядке.

  • Вначале отключаем секционный автомат кнопкой «ОТКЛ» и только потом…
  • …Производим включение рубильника S1 кнопкой «ВКЛ» – Положение «1».
  • Как я уже писал, для рубильника S2 проделывают те же действия.

Что касается электрической блокировки, то, например, когда каждый рубильник находится в положении «1» – секционный автоматический выключатель включить нажатием кнопки «ВКЛ» нельзя.


Да, еще… Если оба ввода пропали, то ДГ запускается обслуживающим персоналом, он стартует и на 3-м вводе появляется напряжение. Рубильники S1, S2 переключаются:

  • Вначале в положение «0». И это важно!
  • И теперь нажатием кнопок «ВКЛ» — Положение «2» переводим рубильники во 2-е положение. Таким образом секции 1 и 2 запитаны от ДГ.
  • При восстановлении вводов переключения производятся в обратном порядке! Строго в обратном!

Управление АВР

 

Здесь следует учитывать такой «нештатный» режим, я бы даже сказал «катастрофически аварийный» режим – представьте себе, что рубильник S1 остался в положении «1» (хотя там нет напряжения), а рубильник S2 перевели на питание от ДГ (положение «2»), а потом (ведь все может быть), этот умник включил секционник… И тут получится авария, т.к. напряжение от ДГ поступит на секцию «2» потом на секцию «1» через «секционник» и потом на 1-й ввод – но в обратном направлении! «Это есть очень плохо»! Связано с опасностью для жизни людей и прочим неприятностям…

 


Вот тут и предусмотрена еще электрическая блокировка, которая не позволяет включать секционный автоматический выключатель в данном случае.

Но в ручном режиме это состояние можно создать! Поэтому – сложное устройство должны обслуживать обученные специалисты, знающие инструкции, данное устройство и т.д. и т.п…

P.S. При обозначении кнопок включения / отключения считаю, что кнопки включения нужно обозначать «ВКЛ» а выключения «ОТКЛ». Понятно, что еще и цветом надо обозначать, ну, черная/зеленая кнопка – это кнопка «ВКЛ» А красная – это «ОТКЛ». Но не «ВЫКЛ»!!! Зрительно написание «ВКЛ» и «ВЫКЛ» весьма схоже, а посему их можно перепутать, что может быть очень опасно.

P.S.S. O контроллере АВР или блоке АВР или он же БУАВР, о котором я подробно расскажу далее, а именно — в следующем выпуске Automation Weekly UA

 

Связаться с автором можно по адресу: [email protected]

Защиты и автоматика секционного выключателя 6(10) кВ

Защиты и автоматика секционного выключателя (СВ) 6-10 кВ

Для секционного выключателя (СВ) защиты практически аналогичны защитам ввода 6(10) кВ. При этом надо помнить, что в СВ сходятся сигналы присоединений обеих секций.

Например, если говорить про УРОВ, то на СВ заводятся сигналы УРОВ с каждого присоединения подстанции в то время, как на ввод только УРОВ присоединений своей секции. То же самое с сигналами ЛЗШ и дуговой защиты.

СВ 6(10) кВ — это своего рода узел, куда сводится множество защитных сигналов. Поэтому в терминале СВ должно быть достаточно дискретных входов.

Для сетей в односторонним питанием (а мы рассматриваем именно такие) СВ в нормальном режиме всегда отключен. Если срабатывает АВР, то он сначала отключает ввод потерявший питание, а потом включает СВ. Может быть и наоборот, но это больше характерно для быстродействующего АВР (БАВР), который сегодня набирает популярность.

Алгоритма АВР в терминале СВ как такового нет. Он просто выполняет команды АВР терминалов вводов, которые управляют СВ через дискретные входы.

Можно сказать, что РЗА секционного выключателя для стандартной схемы довольно простые и обычно не вызывают вопросов даже у начинающих специалистов.

Кстати, вопрос для начинающих: почему на СВ 6(10) кВ не используют токовую отсечку? Ведь на шинах ток КЗ максимальный и отключать его следует как можно быстрее. Ответы пишите в комментариях.

В следующий раз рассмотрим защиты и автоматику ТН 6(10) кВ

На рисунке

Терминал защиты и автоматики секционного выключателя 6(10) кВ типа БЭМП РУ-СВ.

Разработчик АО «ЧЭАЗ», www.cheaz.ru

БЭМП РУ-СВ содержит все перечисленные в статье защиты

Промышленные системы АВР на контакторах и автоматических выключателях: какой тип выбрать?


Промышленная сфера применения автоматического ввода резерва подразумевает огромное количество вариантов конструктивного исполнения. В зависимости от поставленных задач, количества вводов и секций нагрузки каждая реализация системы АВР будет сугубо индивидуальной. В этой ситуации самое главное — изначально выбрать правильную модель реализации АВР. И здесь придется остановить свой выбор на одном из двух типовых решений — либо АВР на основе контакторов, либо АВР на основе автоматических выключателей. В чем состоят преимущества и недостатки каждого из них?


Контакторы дают возможность быстрых и частых коммутаций в электрической цепи. Кроме того, они максимально надежны и имеют длительный ресурс срабатывания. За счет простоты конструкции такого контактора созданный на его основе АВР будет отличаться компактными размерами. Простота реализации такого решения также положительно сказывается на доступности по стоимости.


С технической точки зрения работа АВР на контакторах будет выглядеть следующим образом. Один контактор контролирует параметры основного ввода, а второй — резервного. При переключении происходит обесточивание контактора основного ввода. На контактор резервного ввода подается напряжение, и он замыкает цепь. При этом между контакторами существует блокировка, которая исключает их одновременное включение.


Конструкция такого АВР очень простая, а скорость переключения намного быстрее в сравнении с автоматическими выключателями. Иногда именно скорость включения резерва является определяющей. Например, для поддержания работы беспрерывных технологических процессов, включения аварийного освещения и сигнализации и др. Вместе с тем, простота контакторов порождает ряд существенных недостатков. Они никак не защищены от токов перегрузки и коротких замыканий. Более того, любая просадка напряжения может привести к случайному срабатыванию. К недостаткам можно отнести и необходимость обязательного использования механической блокировки.


Для устранения недостатков контакторы дополняют защитными реле, автоматами, предохранителями и др. Но это приводит к усложнению схемы и росту габаритов самого АВР. Тут уже логичнее отдать предпочтение схемам АВР на основе автоматических выключателей. По этой причине АВР на контакторах используют обычно там, где схемы подключения требуют самых простых решений (два ввода и одна секция нагрузки). А также в ситуациях, когда скорость переключения находится в приоритете над другими задачами.


Более сложные системы ввода резерва лучше реализовывать с помощью АВР на основе автоматических выключателей. В отличие от контакторов они обладают встроенными функциями защиты. Автомат сработает не только при отключении подачи электроэнергии в основной сети, но и при любых отклонениях токовых характеристик от заданных параметров. К тому же исключается возможность случайных и повторных срабатываний в случае кратковременных колебаний тока и напряжения.


Еще одним преимуществом создания АВР на автоматических выключателях являются расширенные возможности управления. Во-первых, комфортное переключение возможно как в автоматическом, так и в ручном режиме. Во-вторых, автоматические выключатели прекрасно подходят для дистанционного управления, мониторинга и сигнализации. АВР на автоматах можно удаленно подключить к внешним системам ПЛК. Тогда появится возможность создания ввода резерва с использованием группы автоматов. Это дает беспрецедентные возможности использования АВР на основе автоматов в схемах с несколькими вводами и практически неограниченным количеством секций нагрузки.


Что касается недостатков автоматических выключателей, то нужно отметить не такое быстрое переключение по сравнению с контактной группой. И контакты в отличие от автоматов срабатывают более бесшумно. Но в целом эти недостатки относительны и не столь существенны для большинства ситуаций.


В итоге можно сделать вывод, что автоматический ввод резерва и на контакторах, и на автоматах обладает своими достоинствами и своими изъянами. Обычно контакторы используют в простых схемах АВР, для более продвинутых вариантов подходят автоматические выключатели. Но конечное решение по выбору схемы всегда остается за специалистами, которые будут заниматься ее реализацией. А в идеале лучше переложить решение на плечи производителя, который предложит готовое решение под конкретные задачи.

Istio / Circuit Breaking

В этой задаче показано, как настроить прерывание цепи для соединений, запросов,
и обнаружение выбросов.

Прерывание цепи — важный шаблон для создания отказоустойчивого микросервиса.
Приложения. Прерывание цепи позволяет вам писать приложения, которые ограничивают влияние сбоев, всплесков задержки и других нежелательных эффектов сетевых особенностей.

В этой задаче вы настроите правила разрыва цепи, а затем протестируете
конфигурации путем преднамеренного отключения автоматического выключателя.

Приложение httpbin служит серверной службой для этой задачи.

Создайте клиента для отправки трафика на службу httpbin . Клиент
простой клиент нагрузочного тестирования под названием fortio.
Fortio позволяет контролировать количество подключений, параллелизм и
задержки исходящих HTTP-вызовов. Вы будете использовать этот клиент для «отключения» выключателя.
политики, которые вы установили в DestinationRule .

Вы видите, что запрос выполнен! А теперь пора что-нибудь сломать.

В настройках DestinationRule вы указали maxConnections: 1 и
http1MaxPendingRequests: 1 . Эти правила указывают, что если вы превысите
одно соединение и запрос одновременно, вы должны увидеть некоторые сбои, когда
istio-proxy открывает канал для дальнейших запросов и подключений.

  • Позвоните в службу с двумя одновременными подключениями ( -c 2 ) и отправьте 20 запросов
    ( -n 20 ):

      $ kubectl exec "$ FORTIO_POD" -c fortio - / usr / bin / fortio load -c 2 -qps 0 -n 20 -loglevel Предупреждение http: // httpbin: 8000 / получить
    20:33:46 Я логгер.go: 97> Уровень журнала теперь 3 Предупреждение (было 2 Информация)
    Fortio 1.3.1 работает со скоростью 0 запросов в секунду, 6-> 6 процессов, для 20 вызовов: http: // httpbin: 8000 / get
    Начиная с максимального количества запросов в секунду с 2 потоками [gomax 6] ровно для 20 вызовов (10 на поток + 0)
    20:33:46 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:33:47 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:33:47 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    Закончено через 59,8524 мс: 20 звонков. qps = 334,16
    Время агрегированной функции: счет 20 ср. 0.0056869 +/- 0,003869 мин. 0,000499 макс. 0,0144329 сумма 0,113738
    # диапазон, средняя точка, процентиль, количество
    > = 0,000499 <= 0,001, 0,0007495, 10,00, 2
    > 0,001 <= 0,002, 0,0015, 15,00, 1
    > 0,003 <= 0,004, 0,0035, 45,00, 6
    > 0,004 <= 0,005, 0,0045, 55,00, 2
    > 0,005 <= 0,006, 0,0055, 60,00, 1
    > 0,006 <= 0,007, 0,0065, 70,00, 2
    > 0,007 <= 0,008, 0,0075, 80,00, 2
    > 0,008 <= 0,009, 0,0085, 85,00, 1
    > 0,011 <= 0,012, 0,0115, 90,00, 1
    > 0,012 <= 0.014, 0,013, 95,00, 1
    > 0,014 <= ​​0,0144329, 0,0142165, 100,00, 1
    # target 50% 0,0045
    # target 75% 0,0075
    # target 90% 0,012
    # target 99% 0,0143463
    # target 99,9% 0,0144242
    Используемых сокетов: 4 (для идеальной поддержки активности - 2)
    Код 200: 17 (85,0%)
    Код 503: 3 (15,0%)
    Размеры заголовка ответа: количество 20, средн. 195,65 +/- 82,19 мин. 0 макс. 231 сумма 3913
    Тело ответа / общие размеры: количество 20 ср. 729,9 +/- 205,4 мин. 241 макс. 817 сумма 14598
    Всего выполнено 20 вызовов (плюс 0 разминок) в среднем 5,687 мс, 334,2 запросов в секунду
      

    Интересно видеть, что почти все запросы были выполнены! istio-прокси
    дает некоторую свободу действий.

      Код 200: 17 (85,0%)
    Код 503: 3 (15,0%)
      
  • Увеличьте количество одновременных подключений до 3:

      $ kubectl exec "$ FORTIO_POD" -c fortio - / usr / bin / fortio load -c 3 -qps 0 -n 30 -loglevel Warning http : // httpbin: 8000 / получить
    20:32:30 I logger.go: 97> Уровень журнала теперь 3 Предупреждение (было 2 Информация)
    Fortio 1.3.1 работает со скоростью 0 запросов в секунду, 6-> 6 процессов, для 30 вызовов: http: // httpbin: 8000 / get
    Начиная с максимального количества запросов в секунду с 3 потоками [gomax 6] ровно для 30 вызовов (10 на поток + 0)
    20:32:30 Вт http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 Вт http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 Вт http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    20:32:30 W http_client.go: 679> Разобран некорректный код 503 (HTTP / 1.1 503)
    Завершено через 51,9946 мс: 30 звонков. qps = 576,98
    Время агрегированной функции: счет 30 ср. 0,0040001633 +/- 0,003447 мин. 0,0004298 макс. 0,015943 сумма 0,1200049
    # диапазон, средняя точка, процентиль, количество
    > = 0.0004298 <= 0,001, 0,0007149, 16,67, 5
    > 0,001 <= 0,002, 0,0015, 36,67, 6
    > 0,002 <= 0,003, 0,0025, 50,00, 4
    > 0,003 <= 0,004, 0,0035, 60,00, 3
    > 0,004 <= 0,005, 0,0045, 66,67, 2
    > 0,005 <= 0,006, 0,0055, 76,67, 3
    > 0,006 <= 0,007, 0,0065, 83,33, 2
    > 0,007 <= 0,008, 0,0075, 86,67, 1
    > 0,008 <= 0,009, 0,0085, 90,00, 1
    > 0,009 <= 0,01, 0,0095, 96,67, 2
    > 0,014 <= ​​0,015943, 0,0149715, 100,00, 1
    # target 50% 0,003
    # цель 75% 0.00583333
    # target 90% 0,009
    # target 99% 0,0153601
    # target 99,9% 0,0158847
    Используемых сокетов: 20 (для идеальной поддержки активности - 3)
    Код 200: 11 (36,7%)
    Код 503: 19 (63,3%)
    Размеры заголовка ответа: количество 30 ср. 84,366667 +/- 110,9 мин 0 макс 231 сумма 2531
    Тело ответа / общие размеры: количество 30 ср. 451,86667 +/- 277,1 мин. 241 макс. 817 сумма 13556
    Всего выполнено 30 вызовов (плюс 0 разминок) 4.000 мс в среднем, 577.0 запросов в секунду
      

    Теперь вы начинаете видеть ожидаемое поведение при размыкании цепи. Только 36,7%
    запросы выполнены успешно, остальные были перехвачены разрывом цепи:

      Код 200: 11 (36.7%)
    Код 503: 19 (63,3%)
      
  • Запросите статистику istio-proxy , чтобы увидеть больше:

      $ kubectl exec "$ FORTIO_POD" -c istio-proxy - запрос пилотного агента GET stats | grep httpbin | ожидание grep
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.circuit_breakers.default.rq_pending_open: 0
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.circuit_breakers.high.rq_pending_open: 0
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.upstream_rq_pending_active: 0
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.upstream_rq_pending_failure_eject: 0
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.upstream_rq_pending_overflow: 21
    cluster.outbound | 8000 || httpbin.default.svc.cluster.local.upstream_rq_pending_total: 29
      

    Вы можете увидеть 21 для значения upstream_rq_pending_overflow , что означает 21
    до сих пор звонки были помечены как разрыв цепи.

  • .

    Автоматический выключатель - KrakenD API Gateway

    • особенности
    • Предприятие
    • Поддержка
    • Документы
    • Около

      • Партнеры
      • О нас
      • Примеры из практики
      • Блог

    Звезда

    Загрузки

    Дизайнер

    Документация
    • Начиная

      • Вступление
      • Установка KrakenD
      • Использование KrakenD
      • KrakenD vs.KrakenD-CE
      • Игровая площадка
    • Файл конфигурации

      • Обзор конфигурации
      • Файловая структура
      • Несколько файлов конфигурации
      • Поддерживаемые форматы файлов
    • Команды командной строки

      • Пробег
      • Проверьте
    • Сервисные настройки

      • TLS
      • Безопасность
    • Конечные точки

      • Создание конечных точек
      • Пределы скорости
      • Манипуляция ответом
      • Параллельные запросы
      • Пересылка параметров
      • Конечная точка отладки
      • Типы контента
      • Нет работы (только прокси)
      • Последовательный прокси (цепочка требует.)
      • Статические ответы (заглушки)
      • Проверка запросов и ответов
      • Сценарии Lua
      • Конечная точка здоровья
      • WebSockets
    • Бэкэнды

      • Обзор бэкэндов
      • Манипуляция данными
      • Ограничение скорости прокси
      • Автоматический выключатель
      • Поддерживаемые кодировки
      • Кеширование ответов
      • Затенение / зеркалирование трафика
      • Манипуляции с массивами
      • Преобразование запросов и ответов
      • AMQP - RabbitMQ
      • Издатель / подписаться
      • Лямбда-функции
      • Возврат ошибок серверной части
    • Авторизация

      • Обзор JWT

    .

    новейших вопросов об автоматических выключателях - qaru

    Переполнение стека

    1. Около
    2. Продукты

    3. Для команд
    1. Переполнение стека
      Общественные вопросы и ответы

    2. Переполнение стека для команд
      Где разработчики и технологи делятся частными знаниями с коллегами

    3. Вакансии
      Программирование и связанные с ним технические возможности карьерного роста

    4. Талант
      Нанимайте технических специалистов и создавайте свой бренд работодателя

    5. Реклама
      Обратитесь к разработчикам и технологам со всего мира

    6. О компании

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *