Автогенератор принцип работы: Устройство и принцип действия генераторов гармонических колебаний

Содержание

Устройство и принцип действия генераторов гармонических колебаний

Устройство и принцип действия генераторов  Общие сведения. Электронными генераторами гармонических колебаний называют автоколебательные системы, в которых энер­гия источников питания постоянного тока преобразуется в энергию незатухающих электрических сигналов переменного тока требуемой частоты. Электрические сигналы, формируемые генератором, должны быть стабильными по частоте и амплитуде, синусоидальными по форме. По принципу действия различают генераторы с самовозбуж­дением (автогенераторы) и с внешним (посторонним) возбуждением. Автогенераторы используют в качестве возбудителей колебаний требуемых частот, т. е. задающих генераторов. Получаемые от них колебания поступают в последующие каскады с целью усиления мощности или умножения частоты. Генераторы с внешним возбуж­дением являются по существу усилителями и служат для усиления мощности или умножения частоты высокочастотных колебаний.

Автогенератор представляет собой резонансный усилитель (нагрузкой служит резонансный контур) с положительной обратной связью в котором выполнено условие самовозбуж­дения KР=1. Если это условие выполняется только для одной частоты, генерируемые колебания имеют синусоидальную форму, если для многих частот, — сложную форму. Обычно это ус­ловие реализуется в генераторах релаксационных (несинусоидаль­ных) колебаний — мультивибраторах, блокннг-генераторах и др.

Принцип действия. Функциональная схема автогенератора состоит из колебательной системы КС (обычно конту­ра), в которой возбуждаются требуемые незатухающие колебания; источника электрической энергии ИЭ (источника питания), благо­даря которому в контуре поддерживаются незатухающие колеба­ния; усилительного элемента УЭ (транзистора или лампы), с по­мощью которого регулируется подача энергии от источника в кон­тур; элемента обратной связи ЭОС, который осуществляет подачу возбуждающего переменного напряжения из выходной цепи во входную.

По способу осуществления обратной связи различают автоге­нераторы с

  • индуктивной (трансформаторной или автотрансформа­торной)
  • емкостной ОС.

Применяют также схемы двухконтурных генераторов с электронной связью и обратной связью через меж­дуэлектродные емкости.Схемы автогенераторов с индуктивной (трансформаторной) обратной связью. При включении источ­ников питания в коллекторной (анодной) цепи транзистора (лам­пы) возникает ток коллектора, который заряжает конденсатор колебательного контура. После заряда конденсатор разряжается на катушку, В результате в контуре LK CK возникают свободные ко­лебания с частотой fо = 1/(2п\/ LKCK), индуктирующие в катушке связи Lc переменное напряжение той же частоты, с которой проис­ходят колебания в контуре. Это напряжение вызывает пульсацию тока коллектора (анода). Переменная составляющая тока воспол­няет потери энергии в контуре, создавая на нем усиленное тран« зистором переменное напряжение.

Процесс возникновения колебаний в генераторе. В начальный момент (при включении источника пи­тания) свободные колебания в контуре имеют малую амплитуду, поэтому индуктированное этими колебаниями напряжение возбуж­дения на базе транзистора Uб или сетке лампы Uc невелико. После усиления сигнала усилительным элементом ток в контуре iK(i*) воз­растает, в результате чего увеличивается амплитуда напряжения возбуждения U6(Ue), а следовательно, и амплитуда тока в контуре. В установившемся режиме рост тока в контуре ограничивается сопротивлением потерь контура а также затуханием, вносимым в контур за счет прохождения тока по обмотке ОС. Незатухающие колебания в контуре автогенератора установятся лишь при выпол­нении фазового (баланс фаз) и амплитудного (баланс амплитуд) условий самовозбуждения генератора. Фазовое условие сводится к тому, что в схеме генератора долж­на быть установлена положительная ОС между выходной и вход­ной цепями транзистора (лампы). В этом режиме обеспечивается восполнение потерь энергии в контуре. Фазовое условие самовоз­буждения выполняется, если суммарный сдвиг фаз усилительной цепи К и цепи обратной связи 0 составляет 2лп, где-n=0, 1, 2… Фазовое условие удовлетворяется, если переменное напряжение на входе усилительного элемента изменяется в про-тивофазе с переменным напряжением на« контуре выходной цепи. Обычно резонансное сопротивление параллельного контура име« ет чисто активный характер. При воздействии»на базу (сетку) сиг­нала с частотой, равной частоте резонанса, напряжение на коллек­торе (аноде) будет сдвинуто по фазе на 180° (как в обычном резиг сторном каскаде усиления). Напряжение, индуктируемое в обмотке обратной связи Lc за счет тока Iк, проходящего через контурную катушку LK, равно Uр=±jw0MIк, где М — коэффициент взаимоин­дукции между катушками. Правильная фазировка колебаний дости­гается соответствующим включением в схему концов катушки ОС, при котором U$ = — jwоМIк.  В этом случае общий фазовый сдвиг в схеме фк+фр =0, т. е. установится положительная ОС.

Амплитудное условие самовозбуждения схемы состоит в том, что для возникновения автоколебательного режима затухание сиг­нала, вносимое цепью ОС, должно компенсироваться усилителем. Глубина положительной ОС должна быть такой, чтобы полностью восполнялись потери энергии в контуре. При положительной ОС коэффициент усиления  k$ =K/(1 — pK). Коэффициент передачи цепи ОС, показывающий, какая часть переменного напряжения контура подается на базу (сетку) усили­тельного элемента в установившемся режиме работы генератора. Учитывая, что усилитель с положительной ОС переходит в ре­жим генерации при условии k$ >1, коэффициент передачи цепи ОС, при котором обеспечивается самовозбуждение, р>1/Kуст. Для транзисторной схемы коэффициент усиления на резонансной часто­те в установившемся режиме где S, Ri, м — статические параметры лампы. При удовлетворении условий баланса фаз и амплитуд в схеме автогенератора возможно установление колебательного режима.

Режимы возбуждения. Генерация колебаний зависит от выбора параметров контура и усилительного элемента, а также от началь­ного режима работы. При выборе исходной рабочей точки на пря­молинейной части характеристики получаем мягкий режим самовоз­буждения, при котором достаточно небольшого изменения тока, чтобы развивались колебания. Если рабочая точка выбрана в области нижнего изгиба харак­теристик (при большом напряжении смещения), то крутизна мо­жет оказаться недостаточной для обеспечения генерации при выбран­ном значении коэффициента взаимоиндукции М. В этом режиме, называемом режимом жесткого самовозбуждения, возбуждение ге­нератора возможно лишь при большой амплитуде напряжения воз­буждения. В транзисторной схеме автогенератора для получения мягкого режима самовозбуждения ,на базу транзистора относительно эмиттера подают- начальное напряжение смещения EСм= — ER2 с делителя R1R2. По мере нарасташш амплитуды коле­баний начинает преобладать падение напряжения на резисторе Ra, поэтому в устанавившемся режиме смещение на базе станет поло­жительным: EСм=IэRэ — ЕВ2. При этом генератор переходит в более экономичный жесткий колебательный режим с малыми углами от­сечки коллекторного тока.

В ламповой схеме генератора  мягкое само­возбуждение с последующим переходом от мягкого режима к жест­кому осуществляется автоматически с помощью цепи Rc Cc, вклю­чаемой в цепь сетки. При этом лампа Л должна работать в режиме сеточных токов. В начальный момент смещение на сетке отсутству­ет, а крутизна велика. С ростом напряжения возбуждения появля-ется сеточный ток, который обеспечивает заданное смещение

Электропитание автогенераторов. Схемы автогенераторов являются схемами с последовательным питанием. поскольку транзистор (лампа) и колебательный контур LK CK по отношению к источнику £к или Е& включены последовательно и через них проходит постоянная составляющая коллекторного (анод* ного) тока. В этих схемах приближение руки к контуру LK CK (на­пример, при настройке) влияет на его емкость, а следовательно, и частоту. Кроме того, в ламповой схеме контур относительно корпуса находится под сравнительно высоким напряжением анодного источ­ника, что неудобно при обслуживании. Однако схема с последова-тельным питанием содержит меньше блокировочных элементов (кон­денсаторов, дросселей).

В схемах автогенераторов с параллельным питанием транзистор (лампа), контур LKCK и источник пи­тания Ек(Еа) включены параллельно. Принцип действия генератора, собранного по этой схеме, в основном аналогичен принципу действия генератора с последовательным питанием. Разделение переменной и постоянной составляющих коллекторного (анодного) тока дости­гается заградительными дросселями L3 и конденсаторами Ср. . Пере­менная составляющая коллекторного (анодного) тока, для которой дроссель представляет большое, а конденсатор малое сопротивле­ние, в основном проходит через транзистор (лампу) и контур, вос­полняя в нем потери энергии. Если бы в схеме не было дросселя L3, переменная составляющая тока, замыкаясь через источник, не поступала бы в контур и возникновение колебаний было бы невоз­можно. При отсутствии в схеме конденсатора Ср постоянный ток от источника ЕК(Е&), замыкаясь через дроссель L3 и катушку LK, мог бы заметно возрасти и вызвать перегрузку источника и недо­пустимый нагрев катушек L3 и LK.

Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения.

Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках.

Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора.

На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная.

Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.
Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков

На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

1.3 Принцип действия автогенератора

Механизм
возникновения колебаний можно упрощенно
трактовать следующим образом. В момент
включения автогенератора в колебательной
системе самопроизвольно возникают
слабые свободные колебания, обусловленные
включением источников питания, замыканием
цепей, скачками токов и напряжений в
усилительном приборе и так далее.
Благодаря специально введенной цепи
положительной ОС, часть энергии колебаний,
возникающих на выходе усилителя,
поступает на его вход. Ввиду наличия
узкополосной (обязательно высокодобротной)
колебательной системы, все описанные
процессы происходят только на одной
частоте
и резко затухают на других частотах.

Вначале,
после включения питания автогенератора,
усиление сигнала происходит в линейном
режиме, а затем, по мере роста амплитуды
колебаний, существенную роль начинают
играть нелинейные свойства усилительного
элемента. В результате амплитуда выходных
колебаний автогенератора достигает
некоторого установившегося уровня и
потом становится практически неизменной.
Энергия, отбираемая усилителем у
источника постоянного тока, за один
период колебаний, равна энергии
расходуемой за то же время в нагрузке.
В этом случае говорят о стационарном
режиме работы
автогенератора.

1.4 Условия самовозбуждения генератора

Выясним
условия, при которых обязательно
возникают незатухающие колебания в
автогенераторе. Для
процесса возбуждения и генерации
колебаний часть их мощности с выхода
усилителя (точнее, с колебательной
системы) подается на его вход по цепи
положительной обратной связи. Говоря
другими словами, подобное устройство
«возбуждает само себя» и поэтому
называется автогенератором
с самовозбуждением.

Выражение
для напряжения обратной связи на любой
частоте генерации
можно записать в виде

.
(3)

Тогда
выходное напряжение
,
или с учетом (3)

.
(4)

Как следует из
соотношения (4), автогенератор будет
работать в стационарном режиме при
условии:

(5)

Представим формулу
(5) следующим образом:

(6)

Здесь

и
– модули коэффициента усиления собственно
усилителя (без цепи положительной ОС)
и коэффициента передачи цепи положительной
ОС;и
– фазовые
сдвиги, вносимые соответственно
усилителем и цепью положительной ОС на
текущей частоте
.

В теории
автогенераторов выражение (6) принято
представлять в виде двух равенств:

;
(7)

,
(8)

где
— коэффициент усиления усилителя с
обратной связью;.

Соотношение (7)
определяет условие баланса амплитудв автогенераторе. Из него следует, что
в стационарном режиме на генерируемой
частоте коэффициент усиления усилителя
с обратной связьюравен единице, и имеет тот смысл, что
для устойчивой работы автогенератора
необходимо, чтобы поступление энергии
в контур было бы равно энергии потерь
за период колебаний.

Равенство
(8) характеризует условие
баланса фаз
.
Оно показывает,
что в стационарном режиме суммарные
фазовые сдвиги сигнала на частоте
генерации, создаваемые усилителем и
цепью положительной ОС, должны быть
равны (или кратны)
,
т.е. подкачка
энергии порциями через цепь обратной
связи в контур должна осуществляться
в фазе с собственными колебаниями в
контуре. И физически означает тот факт,
что обратная связь должна быть
положительна. В схемах автогенераторов
гармонических колебаний, работающих в
стационарном режиме, соотношения (7) и
(8) выполняются на одной фиксированной
частоте
,
которая являетсярезонансной
для узкополосной
колебательной системы.

Если
же
,
то амплитуда выходных колебаний будет
непрерывно нарастать, что является
необходимым условием самовозбуждения
генератора.

Таким
образом, условие
самовозбуждения

автогенератора имеет
следующий вид:

АВТОГЕНЕРАТОР

Автогенератор — это генератор, вырабатывающий электромагнитные колебания. Автогенератор самопроизвольно возбуждает колебания, преобразуя их из энергии источников питания. Он не зависит от внешних воздействий, поэтому носит название генератора с самовозбуждением.

Принцип работы автогенератора заключается в том, что источник энергии через резонатор, посредством переходного колебательного процесса, воздействует на активный элемент. Для этого необходимо, чтобы источник энергии обязательно был включен. Активный элемент превращает энергию источника в энергию колебаний, которые передаются в резонатор. Амплитуда колебаний увеличивается при выполнении условия самовозбуждения генератора — мощность, которую потребляет резонатор, меньше мощности активного элемента. Возрастающая амплитуда приводит к энергетическому балансу. Активный элемент с ростом амплитуды становится нелинейным и таким образом приостанавливает возрастание отдаваемой мощности. Это приводит к уравновешиванию отдаваемой и потребляемой мощности. Если малые отклонения не влияют на равновесие, то происходит установка стационарного режима колебаний. Частота и амплитуда колебаний не изменяются во времени, характеризуются параметрами активного элемента и колебательной системы, происходящей в автогенераторе. Именно эта характеристика отличает автогенераторы от каких-либо других каскадов радиопередатчиков.

Первый ламповый автогенератор был построен в 1912 г. Ли де Форестом. Но в связи с тем, что он вовремя не успел запатентовать свое изобретение, в 1913 г. официальным изобретателем такого автогенератора стал Г. Армстронг. Тяжба между ними продолжалась до 1934 г., правда оказалась на стороне Фореста, но в радиотехнике принято считать, что ламповый генератор сконструировал Армстронг. Явились и другие претенденты на получение патента данного изобретения, такие как Р. Фессендер, А. Мейснер, Г. Раунд, Р. Хартли и Э. Колпиц, но их устройства не получили широкого распространения.

Благодаря ламповому генератору можно было осуществлять обратную связь по одному каналу, так как он генерировал колебания одной частоты. Существует множество видов автогенераторов, одинаковым началом для которых служит автоколебательная система, генерирующая автоколебания.
Одноконтурный автогенератор содержит соответственно один колебательный контур.

В трехточечном автогенераторе напряжение обратной связи убирается с колебательного контура в трех точках: путем отвода от катушки; в другом варианте путем подключения контура либо к транзистору, либо к электронной лампе тремя проводами.

Подобный механизм работы наблюдается у автогенератора с емкостной обратной связью, также работающего по трехточечной схеме. Напряжение обратной связи в этом генераторе убирается с контура колебаний через емкостный делитель напряжения, т. е. с подключением контура к электронной лампе или транзистору.

Особенность внутреннего кольцевого автогенератора заключается в том, что его частота зависит от рабочей температуры, напряжения питания и условий производства микроконтроллера, изменяется под воздействием этих факторов. При выборе кольцевого автогенератора как источника основных синхроимпульсов он перезапускается для того, чтобы обеспечить синхронизацию процесса.

Чтобы максимально приблизить режим транзистора к режиму усилителя мощности, исследователи разработали транзисторные и диодные автогенераторы. Они различаются по типам активного элемента. В транзисторных автогенераторах по цепи обратной связи на вход транзистора поступают колебания из собственного резонатора. В диодных обратная связь происходит без вмешательства специальных элементов, а стационарные колебания производятся благодаря определенным процессам в генераторных диодах.

Автогенераторы различаются также по режимам возбуждения. При включении напряжения питания возникает условие самовозбуждения — генерация происходит самопроизвольно, независимо от внешнего воздействия. Такой режим носит название мягкого. При таком режиме возбуждения колебаний состояние покоя в автогенераторе нестабильно. При изменении условий можно перейти к жесткому режиму возбуждения. В отличие от мягкого режима колебания возбуждаются только при наличии внешнего воздействия. Оно создает колебания с амплитудой, превышающей пороговое значение. Примером может служить радиоимпульс, воздействующий на автогенератор от внешнего источника. Еще одним отличием от режима мягкого возбуждения колебаний является то, что состояние покоя в автогенераторе при жестком режиме устойчиво, стабильно.

Вырабатываемые автогенераторами электромагнитные колебания передаются по цепи обратной связи переменного напряжения с выхода на вход самого автогенератора. Обязательным условием этой системы является рост колебательной энергии, в значительной мере превосходящий потери. Вместе с этим амплитуда колебаний также увеличивается. Именно этот принцип объединяет все вышеперечисленные автогенераторы.

Применяются автогенераторы в радиопередающих устройствах.

  • Предыдущее: АВТОВЫШКА
  • Следующее: АВТОГРЕЙДЕР

принцип работы, устройство, схема подключения, назначение

Для питания бортовой сети транспортного средства предусмотрено два источника тока. И водителю очень важно разбираться в принципах работы автомобильного генератора, который наряду с аккумуляторной батареей, предназначен для обеспечения энергией электрооборудования машины.

К надёжности и стабильности устройств такого рода предъявляются жесткие требования.

В Российской Федерации производимое и используемое электрооборудование должно соответствовать ГОСТ Р 52230-2004. Документ устанавливает общие технические условия, которые распространяются и на стартерные аккумуляторы автомобилей. Упомянутый национальный стандарт полностью соответствует международным нормативам, что позволяет использовать на отечественных машинах компоненты иностранного производства.

На заре автомобилестроения и вплоть до 60-х годов прошлого века в бортовых сетях использовались генераторы постоянного тока — капризные и маломощные. С появлением полупроводниковых (селеновых и кремниевых) выпрямителей на машины стали ставить агрегаты переменного тока. Они втрое меньше по массе и при той же нагрузке обеспечивают более высокую стабильность выходного тока.

Для чего в автомобиле нужен генератор?

Генератор используется для поддержания в бортовой сети определенных напряжения и тока. Основное назначение генератора автомобиля состоит в обеспечении устойчивого питания электрооборудования при работающем двигателе – в частности, для:

  • Заряда аккумулятора.
  • Питания всех потребителей электрического тока в нормальных условиях.
  • Питания потребителей совместно с АКБ при экстремальной эксплуатации.

Применение автомобильного генератора позволяет восстанавливать заряд аккумулятора, который расходуется на запуск двигателя при помощи стартера. При этом напряжение в бортовой сети пребывает в строго установленных пределах, превышающих электрохимический потенциал пластин батареи.

Разобравшись в вопросе, для чего нужен генератор в автомобиле, необходимо понять, что в случае отказа агрегата двигатель проработает еще какое-то время за счет аккумулятора. Продлить этот период можно, отключив все второстепенные потребители: вентилятор отопителя, кондиционер, аудиосистему. По исчерпании заряда батареи двигатель заглохнет.

Устройство и конструкция автомобильного генератора

Трехфазные электроагрегаты переменного тока, устанавливаемые на современных машинах, могут быть 2-х видов: стандартный и компактный. Общее устройство автомобильных генераторов 2-х видов одинаково — они состоят из следующих элементов:

  • Шкива с валом и подшипниками.
  • Ротора с контактными кольцами.
  • Обмоток статора.
  • Корпуса генератора.
  • Регулятора напряжения.
  • Выпрямительного устройства.
  • Щеточного узла.

Конструкции автомобильных генераторов различаются только особенностями компоновки. При одинаковых электрических параметрах стандартные агрегаты значительно крупнее малоразмерных. Компактность обеспечивается за счет использования современных материалов и технологий.

Вот из чего состоит электрогенератор и какие функции выполняют его компоненты:

  • Шкив обеспечивает передачу вращения от коленвала на ротор с помощью ремня.
  • Корпус генератора имеет две крышки (переднюю, заднюю) и нужен для соединения элементов в единую конструкцию. На наружной поверхности размещены кронштейны, с помощью которых устройство крепится на двигателе.
  • Ротор представляет собой вал, на котором установлены обмотки возбуждения и контактные кольца из электротехнической меди.
  • Статор включает в себя магнитопровод из пакета стальных пластин, в которых вырезаны фигурные пазы. В них уложены трехфазные обмотки из одножильного медного провода, где и генерируется ток.
  • Регулятор напряжения изготавливается в виде отдельного блока или комбинируется со щеточным узлом. Основное назначение — управление работой генератора путем изменения тока в обмотке возбуждения.
  • Выпрямительное устройство по схеме Ларионова состоит из двух частей: алюминиевых теплоотводов, в каждый из которых запрессовано по три силовых диода. Вентили обеспечивают преобразование переменного напряжения в постоянное, что используется в бортовой сети для питания электрооборудования.
  • Передача напряжения на обмотку возбуждения производится через специальный узел и цилиндрические контактные кольца. Щетки делаются из специальных сортов графита и устанавливаются в держателе с направляющими, изготовленными из диэлектриков. Для обеспечения плотного контакта они подпружинены, а напряжение на них подается по проводу, запрессованному в основание.

Разбираясь с устройством генератора современного автомобиля, следует выделить в нем механическую и электрическую часть. Первая (к которой относятся шкив и два подшипника ротора) обеспечивает его вращение в корпусе. Вторая часть собственно генерирует электрический ток для запитывания бортовой сети. Описываемая схема автомобильного генератора впервые была применена в изделиях американской фирмы «Невиль» в 1946 году. Такими устройствами комплектовались военные машины и автобусы.

Основные параметры генератора

Основные номинальные параметры определяются исходя из технических требований к конструкции конкретной модели транспортного средства:

  • Напряжение. В соответствии с ГОСТ 52230-2004 выбирается из диапазона от 7,14 и до 28 В.
  • Ток отдачи.
  • Частота возбуждения и самовозбуждения.

Токоскоростная характеристика определяет зависимость номинального тока генератора от частоты его вращения. Напряжение в бортовой сети легковых и коммерческих автомобилей, а также автобусов составляет 12 В, особо мощных и специальных машин — 24 В. Максимальный ток отдачи определяется при частоте вращения ротора в 6 000 мин-1.

Еще одна важнейшая характеристика данного агрегата — КПД. Для современных моделей этот показатель находится на уровне 50-60%.

Как работает автомобильный генератор?

Устройство начинает функционировать только после запуска двигателя стартером, который запитывается напрямую от аккумуляторной батареи. Ключевой принцип работы генератора автомобиля состоит в преобразовании механической энергии в электрическую. На коленчатом валу силового агрегата установлен шкив, который раскручивает через ременную передачу установленный на необслуживаемых подшипниках ротор.

Питание обмотки возбуждения, расположенной на вращающемся якоре, осуществляется от аккумулятора через щеточный узел и контактные кольца. Для защиты батареи от саморазряда подключение производится через специальный выпрямитель, состоящий из трех диодов. Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства.

Вращающийся якорь создает электромагнитные поля, которые индуцируют в обмотках статора переменный ток. Он поступает на выпрямитель, представляющий собой блок диодов. В него входят шесть вентилей: по три отрицательных и положительных. Они обеспечивают преобразование фазного напряжения в линейное. Соединение обмоток генератора осуществляется по схеме «треугольника» или «звезды». В первом случае величина тока в 1,7 раза ниже, нежели во втором. Треугольник применяется на моделях авто повышенной мощности.

Описываемый принцип действия автомобильного генератора обеспечивает поддержание в бортовой сети напряжения в диапазоне от 13,9 до 14,5 В. Точная величина зависит от частоты вращения коленчатого вала и уровня нагрузки. Потребители (например, аккумулятор) к электроагрегату подключаются через вывод «В+».

Для чего в генераторе регулятор напряжения?

При изменении частоты оборотов коленчатого вала и соответственно ротора в бортовой сети могут возникнуть скачки напряжения, которые негативно сказываются на работе потребителей. Скачки устраняются за счет ограничения тока возбуждения, передаваемого через щетки с регулятора напряжения на ротор. Управление осуществляется путем изменения времени подключения обмотки якоря в зависимости от нагрузки на бортовую сеть.

Если возникает неисправность регулятора или повреждение щеточного узла и контактных колец, возможен недозаряд или перезаряд аккумуляторной батареи. Длительная эксплуатация машины с таким дефектом приведет к выходу из строя АКБ.

Неисправность генератора можно определить по индикатору на панели приборов. Горение лампочки заряда аккумулятора после запуска говорит о недостаточном напряжении в сети, а мигание указывает на превышение.

Заключение

Даже самое общее представление об устройстве и принципах работы автомобильного генератора может помочь избежать неисправностей электрооборудования. Генератор начинает работать после запуска двигателя и выполняет функции основного источника тока в автомобиле.

В процессе эксплуатации автомобиля необходимо тщательно следить за натяжением приводного ремня, которое влияет на положение генератора. На ряде современных автомобилей агрегат закреплен прочно, и изношенный клиновый или поликлиновый ремень необходимо сразу менять. Поддержание генератора в исправном состоянии позволит избежать крупных трат на капитальный ремонт авто.

Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т.е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы — обычно 2…3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в «треугольник» фазные токи меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у «звезды» больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».

Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т. е. получается «двойная звезда». Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом «+» генератора, а другие три с выводом «—» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.  Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т.е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+» генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя» используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное — только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы — полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т.к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с «массой» и выводом «+» генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колеи — скользящая, со стороны привода — плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства — резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец.

У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта — клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8. ..2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т. п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

6. Генераторы. Аналоговые устройства аппаратуры связи

Автогенераторы (или, чаще, генераторы) используются в радиотехнике и связи для получения электромагнитных колебаний. В зависимости от формы колебаний различают генераторы гармонических и негармонических (прямоугольных, пилообразных, импульсных и т.  п.) колебаний.

В качестве активных элементов в генераторах применяются электронные лампы, биполярные и полевые транзисторы и др. Различие в элементной базе пассивной части схемы генератора позволяет вести речь о LC–генераторах или о RC–генераторах.

На рис. 6.1, а показан параллельный колебательный контур, состоящий из элементов L, C и G. Если контуру сообщить некоторое количество энергии, то в нем возникнут свободные гармонические колебания. Из-за наличия резистивной проводимости G в контуре имеются потери и колебания будут затухающими, т. е. напряжение на контуре будет иметь вид затухающей синусоиды (рис. 6.1, б):

,

где – начальная амплитуда напряжения на контуре, a – коэффициент затухания контура; – частота свободных колебаний; – резонансная частота контура; j – начальная фаза колебания.

Рис. 6.1

Чтобы превратить такой контур в генератор незатухающих гармонических колебаний, нужно возмещать в нем потери, т. е. пополнять контур энергией. Энергию в контуре можно пополнять, например, за счет собственных колебаний, снятых с контура и усиленных усилителем. Работающая на таком принципе схема автогенератора показана на рис. 6.2 (источник питания обозначен на схеме ). Она состоит из биполярного транзистора, в коллекторную цепь которого включен колебательный контур. С помощью трансформатора напряжение снимается с контура и подается на вход (участок «база–эмиттер» ) транзистора.

Рис. 6.2

Причиной возникновения колебаний в автогенераторе являются флуктуации тока в элементах реальной схемы (за счет теплового движения электронов в активных элементах и резисторах, дробового эффекта в активных элементах и т. д.), а также за счет внешних помех. Флуктуации тока , протекающего через контур, вызывают флуктуации напряжения на контуре . Спектр этих случайных флуктуаций весьма широк и содержит составляющие всех частот.

Составляющие напряжения с частотами, близкими к резонансной частоте контура , будут иметь наибольшую амплитуду, так как модуль комплексного эквивалентного сопротивления контура является наибольшим и равным именно на этой частоте . Выделенное на контуре синусоидальное с частотой напряжение через цепь обратной связи, образованную трансформатором, передается на вход транзистора, создавая напряжение . Это напряжение вызовет увеличение коллекторного тока , что, в свою очередь, приведет к увеличению напряжения на контуре . Как следствие этого увеличатся напряжение обратной связи и напряжение и, значит, вновь увеличатся коллекторный ток и напряжение на контуре и т. д. Таким образом, в замкнутой системе автогенератора самовозбуждаются колебания частоты, близкой к резонансной частоте контура .

Очевидно, важным условием возникновения колебаний является то, что фаза напряжения должна быть такой, чтобы увеличение напряжения вызывало увеличение коллекторного тока и, тем самым, новое увеличение . Это условие и есть условие баланса фаз. Баланс фаз достигается правильным включением вторичной обмотки трансформатора. При переполюсовке обмотки трансформатора возрастание напряжения на контуре приведет к уменьшению коллекторного тока, т.  е. баланс фаз нарушится и самовозбуждения не произойдет.

Обратная связь (ОС), при которой выполняется баланс фаз, является положительной обратной связью. В противном случае обратная связь отрицательная. Самовозбуждение автогенератора возможно только при наличии положительной обратной связи.

Пока амплитуда напряжения была мала, работа происходила на линейном участке вольт-амперной характеристики транзистора. С увеличением амплитуды колебаний на контуре возрастает напряжение обратной связи и, значит, входное напряжение транзистора . При этом все сильнее сказывается нелинейность ВАХ транзистора. Наконец, при достаточно больших амплитудах колебаний ток коллектора перестает увеличиваться, значения напряжения на контуре , обратной связи и входное стабилизируются и в автогенераторе установится стационарный динамический режим с постоянной амплитудой колебаний и частотой генерации, близкой к резонансной частоте колебательного контура . Таким образом, стационарные колебания в автогенераторе устанавливаются только благодаря наличию нелинейности вольт-амперной характеристики транзистора.

Рассмотренный выше генератор содержит трансформатор и называется генератором с трансформаторной обратной связью, т. к. через трансформатор напряжение с выхода транзисторного усилительного каскада попадает на его вход. Можно сказать, что трансформатор представляет собой цепь обратной связи. Транзисторный усилительный каскад есть ни что иное, как нелинейный резонансный усилитель. Таким образом, автогенератор с трансформаторной обратной связью можно изобразить в виде усилителя, охваченного обратной связью (рис. 6.3). Обобщенная схема на рис. 6.3 справедлива и для других типов генераторов.

Рис. 6.3

Недостатком схем LC–генераторов с трансформаторной обратной связью является наличие двух индуктивно связанных катушек. Поэтому на практике используют схемы LC–генераторов с автотрансформаторной обратной связью, в которых напряжение ОС снимается с части колебательного контура. Такая схема изображена на рис. 6.4, а. Она известна также под названием схемы индуктивной трехточки. Элементы С, и образуют колебательный контур: резистор является элементом цепи автоматического смещения, через который протекает постоянная составляющая тока базы; конденсатор предотвращает попадание напряжения питания на базу и влияет на постоянную времени цепи автосмещения. На рис. 6.4, б приведена эквивалентная схема индуктивной трехточки по переменному току, т. е. цепи питания и смещения на рисунке не показаны.

Обычно полагают, что входное сопротивление транзистора настолько велико, что током базы можно пренебречь. В этом случае, как видно из рис. 6.4, б, элементы С, и образуют трехэлементный колебательный контур, в котором сначала происходит резонанс токов, а затем резонанс напряжений в контуре С. Усилительный каскад со сложным колебательным контуром в коллекторной цепи транзистора является нелинейным резонансным усилителем.

Рис. 6.4

Цепью обратной связи в этой схеме служит делитель напряжения, образованный индуктивностью и индуктивностью . Действительно, напряжение, снимаемое с выхода усилительного элемента (транзистора), приложено к колебательному контуру или, что то же, к ветви (рис. 6.4, б). Напряжение обратной связи снимается с индуктивности и подается на вход усилительного элемента. Усилительный каскад на одном транзисторе поворачивает фазу сигнала на 180° . Для соблюдения баланса фаз цепь обратной связи также должна вносить фазовый сдвиг 180° . Это и происходит на самом деле. Ток в ветви С из-за емкостного характера ее сопротивления опережает напряжение на контуре на 90° . В свою очередь, напряжение на индуктивности опережает этот ток еще на 90° . Таким образом, сдвиг фаз между напряжениями и составляет 180° .

На сравнительно низких частотах, где реализация LC–контуров становится затруднительной из-за больших габаритов и массы, низкой добротности и невозможности перестройки, используют RC–автогенераторы. Они также представляют собой комбинацию усилителя и пассивной RC–цепи для создания обратной связи.

На рис. 6.5, а показана схема такого генератора – однокаскадный транзисторный усилитель, между входом и выходом которого включен лестничный пассивный четырехполюсник.

Для возникновения генерации колебаний необходимо, чтобы напряжение обратной связи, подаваемое на вход генератора, непрерывно возрастало. Это возможно только тогда, когда усиление усилительного каскада больше ослабления, вносимого цепью обратной связи. Кроме того, должно выполняться условие баланса фаз. Последнее означает, что поскольку один каскад транзисторного усилителя вносит сдвиг фаз, равный 180° , то цепь обратной связи также должна вносить сдвиг фаз 180° , чтобы общий сдвиг фаз равнялся 0° (или 360° ).

Рис. 6.5

Рис. 6.6

Однако простейшее RC–звено вносит сдвиг фаз, не превышающий 90° . Поэтому необходимо взять число звеньев не меньше трех. Зависимость сдвига фаз от частоты RC–цепи из трех звеньев показана на рис. 6.5, б. Элементы RC–цепи рассчитывают так, чтобы на частоте генерации получить сдвиг фаз 180° .

В стационарном режиме, кроме баланса фаз, выполняется также и баланс амплитуд, т. е. усиление усилительного каскада становится равным ослаблению цепи обратной связи, так что амплитуда напряжения цепи обратной связи, а значит и выходного, остается постоянной.

На рис. 6.6, а и б изображен еще один RC–автогенератор, носящий название автогенератора с мостом Вина. Это усилитель с коэффициентом усиления ; между его выходом и входом включена RC–цепь обратной связи. Как и в других генераторах, для самовозбуждения колебаний необходимо, чтобы усиление усилителя К было бы больше ослабления, вносимого в выходной сигнал усилителя RC–цепью обратной связи. Усилитель не изменяет фазу сигнала, следовательно, чтобы обратная связь была положительной и, тем самым, выполнялся баланс фаз, цепь обратной связи также не должна изменять фазу сигнала.

Анализ различных схем автогенераторов показывает, что все они могут быть представлены обобщенной структурой, показанной на рис. 6.7, а. При этом избирательная система (LC и RC–цепи) может быть включена либо в схему усилителя, либо в схему цепи обратной связи. Задача избирательной системы – отфильтровать ненужные гармонические составляющие, возникающие из-за нелинейности ВАХ, и обеспечить, тем самым, условия самовозбуждения автогенератора только на частоте генерации.

На рис. 6.7, б изображена обобщенная схема автогенератора с разомкнутой цепью ОС. На входе усилителя действует гармоническое напряжение с комплексной амплитудой . Усилитель изменяет амплитуду и начальную фазу колебания и формирует напряжение с комплексной амплитудой . Коэффициент усиления усилителя равен отношению амплитуды выходного напряжения к амплитуде входного напряжения

Рис. 6.7

. (6.1)

Усилитель добавляет к начальной фазе входного гармонического напряжения фазовый сдвиг .

Цепь ОС ослабляет сигнал, действующий на ее входе, до величины . Коэффициент передачи цепи обратной связи равен

. (6.2)

Фазовый сдвиг, вносимый этой цепью, составляет величину .

Для того, чтобы после замыкания цепи обратной связи в генераторе происходило самовозбуждение колебаний, необходимо, чтобы на частоте генерации амплитуда гармонического напряжения на выходе схемы рис. 6.7, б была больше амплитуды гармонического напряжения на входе схемы, т. е.

, (6.3)

где – коэффициент передачи обобщенной схемы автогенератора с разомкнутой обратной связью.

Преобразуем выражение (6.3):

. (6.4)

С учетом (6.1) и (6.2) получим

. (6.5)

Выражение (6.5) является фундаментальным в теории автоколебаний; оно применимо к любому типу генератора.

Таким образом, для самовозбуждения автогенератора необходимо, чтобы на частоте генерации усиление усилителя превышало ослабление, вносимое цепью обратной связи, т. е.

. (6.6)

Условие (6.5), или (6.6), является необходимым, но недостаточным. Кроме него должен выполняться баланс фаз, т. е. совпадение начальных фаз гармонических напряжений на входе и выходе схемы рис. 6.7, б. Такое совпадение наступает, когда суммарный сдвиг фаз, вносимый усилителем и цепью обратной связи, равен нулю или кратен 360° :

, (6.7)

где К – целое число.

Таким образом, сдвиг фаз в цепи обратной связи зависит от сдвига фаз в усилителе и дополняет его до 360° .

Генератор с трансформаторной обратной связью. Усилительным (активным) элементом в генераторе с трансформаторной обратной связью является усилительный каскад на одном транзисторе с колебательным контуром в коллекторной цепи. На рис. 6.8, а показана вольт-амперная характеристика транзистора, представляющая зависимость тока коллектора от напряжения на участке « база – эмиттер» .

При выборе постоянного напряжения смещения и отсутствии переменного напряжения на входе транзисторного усилительного каскада (рис. 6.2) на участке « база – эмиттер» действует напряжение . В цепи коллектора транзистора протекает постоянный ток . Предположим теперь, что на входе транзисторного каскада появилось гармоническое напряжение с небольшой амплитудой , так что рабочая точка, смещаясь под действием переменного напряжения, остается все время на линейном участке ВАХ. В этом случае в цепи коллектора наряду с постоянным током будет протекать переменный ток.

Рис. 6.8

Из-за линейного характера рабочего участка ВАХ переменный ток в цепи коллектора будет гармоническим и будет иметь ту же частоту, что и напряжение на участке « база – эмиттер» . Если постоянно увеличивать амплитуду гармонического напряжения на входе транзистора (рис. 6.8, б), то наступит момент, когда рабочая точка, перемещаясь под действием переменного напряжения, начнет « захватывать» нелинейный участок ВАХ. Ток коллектора перестанет тогда быть гармоническим. Помимо первой гармоники, имеющей ту же самую частоту, что и входное напряжение, появятся высшие гармоники.

В случае, когда коллекторный ток транзистора является гармоническим (рис. 6.8, а), напряжение, создаваемое этим током на колебательном контуре, будет также гармоническим с амплитудой , где Z – полное сопротивление контура на частоте гармонического колебания.

Коэффициент передачи (усиления) усилителя определяется отношением амплитуды выходного напряжения к амплитуде входного напряжения (рис. 6.7, б):

.

Отношение амплитуды гармонического колебания тока к амплитуде гармонического колебания напряжения (при условии, что эти амплитуды малы) называется дифференциальной крутизной вольт-амперной характеристики транзистора:

. (6.8)

Пока рабочая точка не выходит за пределы линейного участка ВАХ, дифференциальная крутизна остается постоянной.

Таким образом коэффициент передачи усилителя равен произведению дифференциальной крутизны ВАХ в рабочей точке и полного сопротивления колебательного контура Z на частоте гармонического колебания:

. (6.9)

При больших амплитудах напряжения на входе транзистора (рис.6.8, б) ток коллектора перестает быть гармоническим и определение дифференциальной крутизны из (6.8) теряет смысл. Обычно вместо дифференциальной крутизны используют понятие средней крутизны, или крутизны по первой гармонике, т.  е. отношение амплитуды первой гармоники коллекторного тока к амплитуде входного напряжения. Обозначим амплитуду первой гармоники . Тогда вместо (6.8) будем иметь

. (6.10)

Если колебательный контур построен таким образом, что его резонансная частота

совпадает с частотой первой гармоники тока коллектора, то полное сопротивление контура на этой частоте будет максимальным и равным R = 1/G, а на частотах, отличных от резонансной, оно будет уменьшаться. При больших добротностях Q колебательного контура его полное сопротивление станет настолько малым для всех высших гармоник тока, начиная со второй, что эти гармоники не создадут практически никакого напряжения на контуре. Амплитуда напряжения на контуре будет определяться только амплитудой первой гармоники тока: .

Коэффициент передачи усилительного каскада в этом случае определится как

. (6. 11)

Данное выражение справедливо только для резонансной частоты . На других частотах при достаточно высокой добротности контура коэффициент усиления усилителя резко уменьшается. Следовательно, самовозбуждение генератора может произойти только на частоте резонанса колебательного контура, т. е. частота генерации .

Цепь обратной связи в генераторе на рис. 6.2, ослабляющая сигнал, подводимый к усилителю, представляет собой трансформатор с первичной обмоткой, имеющей индуктивность L, вторичной обмоткой с индуктивностью и взаимной индуктивностью М.

Из теории трансформатора известно, что напряжение, наводимое первичной обмоткой во вторичной, зависит от взаимной индуктивности М:

.

В свою очередь, напряжение на первичной обмотке (т. е. на контуре) зависит от ее индуктивности L:

.

Следовательно, напряжение на вторичной обмотке можно выразить через напряжение на колебательном контуре:

. (6.12)

Наличие связи (6.12) между мгновенными значениями напряжения позволяет сразу же установить связь между амплитудами этих напряжений:

.

Коэффициент передачи цепи обратной связи, как это следует из рис. 6.7, б, равен

. (6.13)

Он не зависит от частоты и поэтому одинаков на всех частотах.

Условие самовозбуждения генератора (6.5), или (6.6) примет в данном случае вид:

или . (6.14)

В реальных схемах генераторов выполнение условия (6.14) обеспечивают изменением взаимной индуктивности М. Поэтому данное условие записывают обычно в виде

.

Величина

(6.15)

называется критическим коэффициентом взаимной индукции. Колебания в генераторе могут возникнуть только при обратной связи с .

Второе условие возникновения колебаний (6. 7) означает, что в схеме генератора должен выполняться баланс фаз. Известно, что однокаскадный усилитель (усилитель на одном транзисторе) «переворачивает» сигнал, т. е. вносит сдвиг фаз 180° . Чтобы сдвиг фаз в цепи обратной связи дополнял сдвиг фаз в усилителе до 360° , т. е. равнялся также 180° , необходимо переполюсовать вторичную обмотку трансформатора таким образом, чтобы напряжение на ней было перевернуто относительно напряжения на первичной обмотке.

Пример 6.1

Рассчитать значение коэффициента передачи цепи обратной связи , при котором наступает самовозбуждение автогенератора (рис. 6.2), а также частоту генерации , если заданы параметры элементов контура L = 100 мкГн, С = 0,1 мкФ, R = 20 кОм и средняя крутизна ВАХ транзистора = 4 мА/В.

Из условия (6.14) следует, что самовозбуждение автогенератора наступает при

.

Рассчитаем коэффициент передачи усилителя по формуле (6. 11):

.

Найдем :

.

Самовозбуждение автогенератора наступает при > > 0,0125.

Частотой генерации колебаний является резонансная частота колебательного контура, поэтому

кГц.

Пример 6.2

Рассчитать значение критического коэффициента взаимной индукции автогенератора (рис. 6.2), если заданы параметры элементов контура L = 100 мкГн, R = 10 кОм и коэффициент передачи усилителя .

Рассчитаем вначале крутизну ВАХ транзистора. Из формулы (6.11) имеем

2 мА/В.

Критический коэффициент взаимной индукции рассчитаем по формуле (6.15):

= 5 мкГн.

Колебания в контуре могут возникнуть только при M > 5 мкГн.

Пример 6.3

Рассчитать крутизну характеристики транзистора, при которой наступит самовозбуждение автогенератора (рис.  6.2), если заданы емкость и сопротивление контура C = 10 нФ, R = 5 кОм, добротность контура Q = 10, а также взаимная индуктивность M = 100 мкГн.

Из теории параллельного колебательного контура известно, что

,

где – сопротивление контура на резонансной частоте, r – характеристическое сопротивление контура .

Зная значения Q = 10, = R = 5 кОм, С = 10 нФ, найдем значение L:

= 2,5 мГн.

Для расчета крутизны ВАХ транзистора воспользуемся условием самовозбуждения (6.14). Получаем

5 мА/В.

Крутизна проходной ВАХ транзистора должна быть больше 5 мА/В, чтобы наступило самовозбуждение автогенератора.

Генератор с автотрансформаторной обратной связью (индуктивная трехточка). В данной схеме генератора (рис. 6.4) усилительный каскад собран на одном транзисторе, в коллекторную цепь которого включен трехэлементный колебательный контур из элементов , и С. Ток базы транзистора обычно принимается равным нулю, т. е. входное сопротивление транзистора считается достаточно большим и, следовательно, транзистор не влияет на работу контура.

Из теории реактивных двухполюсников известно, что на частоте

(6.16)

в данном колебательном контуре возникает резонанс токов, полное сопротивление становится максимальным и равным R = 1/G. Эта частота и выбирается в качестве частоты генерации: .

Усиление транзисторного каскада на резонансной частоте определяется, как и в схеме с трансформаторной обратной связью, формулой (6.11):

, (6.17)

где – средняя крутизна ВАХ в рабочей точке, совпадающая с дифференциальной крутизной при малых амплитудах гармонического напряжения на входе транзистора.

Коэффициент передачи цепи обратной связи (рис. 6.7, б) равен

.

Напряжение обратной связи, подаваемое на вход транзистора, снимается с индуктивности и имеет амплитуду . Амплитуду напряжения на входе усилителя, или, что то же, на колебательном контуре, можно вычислить по формуле . Тогда

.

На частоте резонанса токов (6.16), которая и является частотой генерации , амплитуды токов в реактивных ветвях равны по величине, т. е. . Следовательно,

. (6.18)

Условие самовозбуждения (6.6) запишется с учетом (6.17) и (6.18) в следующем виде:

.

Данное условие позволяет подобрать такое отношение индуктивностей и , при котором в генераторе могут возникнуть гармонические колебания. Частота генерации подстраивается согласно (6.16) изменением величины емкости С.

Усилительный каскад на одном транзисторе вносит сдвиг фаз 180° . Для самовозбуждения генератора такой же сдвиг фаз должна вносить цепь обратной связи. Это и происходит на самом деле, поскольку токи в реактивных ветвях контура в момент резонанса токов находятся в противофазе и, значит, напряжения на индуктивных элементах и также находятся в противофазе.

Пример 6.4

Рассчитать минимальное значение коэффициента передачи усилителя, при котором происходит самовозбуждение автогенератора, схема которого приведена на рис. 6.4, б, а также частоту генерации , если заданы параметры элементов контура = 15 мкГн,  = 6 мкГн, С = 0,1 мкФ.

Рассчитаем коэффициент передачи цепи обратной связи по формуле (6.18)

.

Из условия самовозбуждения автогенератора (6.5) получаем

> .

Рассчитаем значение

.

Самовозбуждение автогенератора может наступить только при > 2,5.

Частоту генерации рассчитаем, используя формулу (6.16):

RC–генератор с лестничной цепью обратной связи. Схема генератора изображена на рис. 6.5, а. В цепь коллектора транзистора включено резистивное сопротивление . Усиление транзисторного каскада на любой частоте равно произведению средней крутизны ВАХ в рабочей точке и сопротивления коллекторной цепи:

.

Транзисторный каскад вносит сдвиг фаз 180° .

По-прежнему считаем входное сопротивление транзистора настолько большим, что он не влияет на работу цепи обратной связи.

Из теории черытехполюсников известно, что передаточная функция лестничной цепи, изображенной на рис. 6.5, а, описывается выражением:

. (6.19)

Необходимо, чтобы цепь обратной связи вносила на частоте генерации фазовый сдвиг 180° . Можно показать, что это произойдет, если выбрать частоту генерации равной

.

Подставив данную формулу в (6.19), легко убедиться, что передаточная функция цепи обратной связи будет равна

.

Тогда из (6.6) получим условие самовозбуждения на частоте :

, (6. 20)

т. е. для возникновения в RC–генераторе колебаний усиление транзисторного каскада должно быть больше 29 единиц.

Пример 6.5

Рассчитать значение сопротивления в коллекторной цепи, при котором произойдет самовозбуждение автогенератора (рис. 6.5, а), а также частоту генерируемых колебаний, если заданы параметры элементов цепи обратной связи С = 200 пФ, R = 20 кОм и средняя крутизна ВАХ транзистора = 65 мА/В.

Из условия самовозбуждения (6.20) найдем значение :

Ом.

Для того, чтобы произошло самовозбуждение автогенератора необходимо, чтобы было больше 446 Ом.

Частота генерации рассчитывается по формуле

= 97 кГц.

RC–генератор с мостом Вина. Схема генератора дана на рис. 6.6, а. Усилитель, выполненный на транзисторах или операционном усилителе, имеет независимый от частоты коэффициент передачи К. Между выходом и входом усилителя включен четырехполюсник обратной связи в виде RC–цепи. Схема генератора с разомкнутой обратной связью приведена на рис. 6.6, б.

Коэффициент передачи четырехполюсника обратной связи имеет вид:

. (6.21)

Поскольку усилитель не вносит фазового сдвига, для выполнения условия баланса фаз требуется, чтобы цепь обратной связи также не вносила никакого фазового сдвига. Известно, что RC–четырехполюсник на рис. 6.6, б вносит нулевой сдвиг фаз на частоте

.

На этой частоте будет происходить генерация колебаний.

Подстановка выражения для в (6.21) дает значение коэффициента передачи цепи обратной связи на частоте генерации:

.

Условие самовозбуждения на частоте генерации примет вид:

. (6.22)

Если выбрать и , то условие возникновения колебаний упростится: К > 3. В этом случае гармонические колебания с частотой возникнут в генераторе, когда усиление усилителя будет больше 3 единиц.

Пример 6.6

Рассчитать значение емкости в цепи обратной связи автогенератора (рис. 6.6, а) и частоту генерации , если заданы параметры элементов 20 кОм, = 10 кОм,  = 7 нФ и коэффициент усиления усилителя К = 4.

Значение емкости найдем из условия самовозбуждения (6.22):

.

Отсюда

нФ.

Для того, чтобы произошло самовозбуждение автогенератора, необходимо чтобы емкость была меньше 7 нФ.

Частота генерации рассчитывается по формуле

В усилителях на транзисторе передаточная функция определяется, как было показано выше, выражением

, (6.23)

где – сопротивление нагрузки усилителя (резонансное сопротивление контура, коллекторное сопротивление и т. п.).

Рис. 6.9

Средняя крутизна зависит от амплитуды напряжения на входе транзистора и от положения рабочей точки . На рис. 6.9 показана типичная ВАХ транзистора . Пусть рабочая точка выбрана на середине линейного участка характеристики (). При увеличении амплитуды напряжения средняя крутизна, пока мы находимся в пределах линейного участка характеристики, остается неизменной. Затем средняя крутизна ВАХ падает (рис. 6.10, а).

Если выбрать рабочую точку () на нижнем загибе характеристики , где средняя крутизна мала, то по мере увеличения амплитуды будут охватываться участки характеристики с большей крутизной и, следовательно, будет расти. После прохождения участка с наибольшей крутизной дальнейшее увеличение приводит к уменьшению средней крутизны (рис. 6.10, б).

Рис. 6.10

Рис. 6.11

Из выражения (6. 23) следует, что усиление транзисторного усилителя также зависит от амплитуды напряжения на входе транзистора и от положения рабочей точки. На рис. 6.11, а и б показаны графики в зависимости от амплитуды для двух положений рабочей точки на ВАХ, соответствующих рис. 6.9.

Условие (6.6)

соответствует появлению в генераторе гармонических колебаний с нарастающей амплитудой. Смена знака в этом неравенстве на обратный, т. е. будет означать, что гармонические колебания в генераторе затухают по амплитуде. Установившемуся, или стационарному режиму, соответствует равенство

. (6.24)

Кроме того, на частоте генерации должен выполняться баланс фаз: .

Равенство (6.24) удобно иллюстрировать графически. Сначала строится график зависимости усиления усилителя от амплитуды сигнала на его входе (рис. 6.11), а затем проводится прямая линия на уровне . Перпендикуляр, опущенный из точки пересечения линий на ось абсцисс, указывает на установившееся (стационарное) значение амплитуды гармонического колебания на входе усилителя.

На рис. 6.11, б прямая линия пересекает кривую усиления в двух точках В и С, которым соответствуют две установившиеся (стационарные) амплитуды колебаний и .

Установившийся режим работы генератора называется устойчивым, если отклонение амплитуды от установившегося значения с течением времени будет уменьшаться.

Рассмотрим установившийся режим в точке А на рис. 6.11, а. Уменьшение амплитуды напряжения , т. е. отклонение влево от значения приведет к выполнению неравенства

.

В результате амплитуда колебаний будет увеличиваться и приближаться к установившемуся значению. При увеличении амплитуды напряжения , т. е. при отклонении вправо от будет выполняться неравенство

и амплитуда уменьшится, вновь приближаясь к установившемуся значению .

Точка В на рис. 6.11, б соответствует неустойчивому установившемуся режиму, так как отклонение амплитуды от установившегося значения в сторону уменьшения ведет в силу неравенства

к дальнейшему уменьшению амплитуды и, в конечном счете, к срыву колебаний, а отклонение амплитуды от установившегося значения в сторону увеличения вызовет дальнейший ее рост так как

,

и переход в следующее установившееся состояние, отмеченное точкой С. Установившееся состояние в точке С является устойчивым, в чем легко убедиться с помощью рассуждений, аналогичных приведенным выше.

Можно заметить, что справедливо следующее утверждение: пересечение прямой линии с кривой усиления дает устойчивое установившееся значение амплитуды гармонических колебаний на входе усилителя , если касательная к кривой в стационарной точке имеет отрицательный угол наклона, и неустойчивое значение – если угол наклона касательной является положительным.

По графикам на рис. 6.11 определяется амплитуда установившегося гармонического колебания на входе усилителя. Для того, чтобы определить амплитуду установившегося гармонического колебания на выходе усилителя, или, что то же, на выходе генератора (рис. 6.7), нужно амплитуду напряжения на входе усилителя умножить на коэффициент усиления усилителя в установившемся режиме:

.

Пример 6.7

Рассчитать амплитуду стационарного колебания на выходе автогенератора (рис. 6.2), если заданы L = 100 мкГн, М = 10 мкГн, G = См, а также график зависимости – на рис. 6.12.

Рассчитываем коэффициент передачи цепи обратной связи по формуле (6.43)

Рис. 6.12

.

Рассчитываем коэффициент передачи усилителя, при котором в автогенераторе существуют стационарные колебания:

.

Из условия (6. 23) находим значение стационарной средней крутизны

2 мА/В.

По графику 6.12 определяем амплитуду стационарного колебания на входе усилителя

1,2 В.

Рассчитываем амплитуду стационарного колебания на выходе автогенератора

12 В.

Пример 6.8

Определить амплитуду стационарного колебания на выходе автогенератора (рис. 6.4, б), если заданы индуктивности = 15 мкГн, = 5 мкГн и колебательная характеристика (рис. 6.13) автогенератора.

Рассчитываем коэффициент передачи цепи ОС автогенератора по формуле (6.18)

.

Из баланса амплитуд коэффициент передачи усилителя

.

Рис. 6.13

По колебательной характеристике (рис. 6.13) определяем амплитуду стационарного колебания на входе усилителя. Следует отметить, что прямая пересекает колебательную характеристику в точке С, причем этот режим является устойчивым, поэтому

= 0,6 В.

Амплитуда стационарного колебания на выходе автогенератора определяется по формуле

1, 8 В.

Будем менять величину и наблюдать за процессом возникновения колебаний. Этот процесс зависит также от выбора рабочей точки на вольт-амперной характеристике (напряжения смещения ).

Выбору рабочей точки в области наибольшей крутизны (напряжение смещения на рис. 6.9) соответствует график , показанный на рис. 6.11, а.

Рис. 6.14

На рис. 6.14, а изображены несколько прямых, соответствующих различным значениям .

При колебания в автогенераторе возникнуть не могут, поскольку , значит, любые случайные флуктуации напряжения будут быстро затухать.

Увеличение до значения приводит к условию . Дальнейшее увеличение усиливает неравенство и, таким образом, начиная с Õ , в автогенераторе возникают незатухающие гармонические колебания с соответствующими установившимися амплитудами на входе усилителя . С увеличением установившаяся амплитуда гармонических колебаний плавно нарастает. Уменьшение вызовет плавное уменьшение значений установившейся амплитуды .

График зависимости установившейся амплитуды гармонического колебания на входе усилителя от коэффициента передачи цепи обратной связи приведен на рис. 6.14, б. Такой режим самовозбуждения, при котором амплитуда колебаний плавно нарастает с увеличением , называется мягким режимом самовозбуждения.

Если рабочую точку выбрать на нижнем загибе ВАХ, как это показано на рис. 6.9, при , то график имеет вид, показанный на рис. 6.15, а.

Рис. 6.15

При значениях , равных , и , наличие малых флуктуаций напряжения не приведет к установившемуся режиму работы генератора, поскольку при этих значениях будет иметь место неравенство .

Только начиная с , когда Õ , малые флуктуации амплитуды напряжения начинают быстро расти, пока не установится устойчивое стационарное значение амплитуды колебаний . Дальнейшее увеличение ведет к плавному росту амплитуды установившегося в генераторе колебания.

При плавном уменьшении коэффициента передачи цепи обратной связи амплитуда установившегося гармонического колебания будет также плавно уменьшатся. Колебания сорвутся при значении , меньшем , когда перестанет выполняться условие Õ . На рис. 6.15, б дан график изменения стационарной амплитуды в зависимости от . Такой режим, когда колебания возбуждаются при большем значении , а срываются при меньшем значении , называется жестким режимом самовозбуждения.

Достоинством мягкого режима самовозбуждения является плавное изменение амплитуды при изменении коэффициента передачи . Достоинством жесткого режима является высокий КПД за счет работы с отсечкой коллекторного тока.

Рис. 6.16

Можно объединить достоинства мягкого и жесткого режимов самовозбуждения, если ввести в автогенератор цепь автоматического смещения (рис. 6.16, а). Исходное смещение выбирают таким, чтобы рабочая точка находилась на участке наибольшей крутизны ВАХ, что соответствует мягкому режиму. При нарастании амплитуды колебаний в цепи базы за счет нелинейности ВАХ будет происходить детектирование колебаний. Возрастание постоянной составляющей тока базы , которая на активном сопротивлении создает напряжение × , приведет к уменьшению результирующего напряжения смещения  – × и, как результат, к сдвигу рабочей точки влево (рис. 6.16, б) к нижнему загибу вольт-амперной характеристики . Переходный процесс заканчивается (при соответствующей величине ) установлением жесткого стационарного режима с более высоким КПД.

Вопросы и задания для самопроверки

1. Каким образом в автогенераторе (рис. 6.2) возникают стационарные гармонические колебания?

2. Пояснить принцип работы автогенератора по рис. 6.3.

3. Какие типы автогенераторов существуют? Как работают эти генераторы?

4. Сформулировать условия самовозбуждения автогенераторов:

а) с трансформаторной обратной связью;

б) индуктивной трехточки;

в) RC-генератора с лестничной цепью обратной связи;

г) RC-генератора с мостом Вина.

5. Проверить, произойдет ли самовозбуждение автогенератора (рис. 6.2), если L = 200 мкГн, М = 50 мкГн, = 10 кОм, = 1 мА/В.

Ответ: да.

6. Является ли цепь на рис. 6.4, б автогенератором, если = 2,5;  = 30 мкГн; = 10 мкГн?

Ответ: нет.

7. Рассчитать значение крутизны характеристики транзистора, при котором произойдет самовозбуждение RC-автогенератора с лестничной цепью обратной связи, если = 0,5 кОм.

Ответ: > 58 мА/В.

8. Как рассчитывается частота генерируемых колебаний в автогенераторах разных типов?

9. Рассчитать частоту генерации колебаний в RC-генераторе с мостом Вина, если = 7 нФ, = 10 кОм.

Ответ: = 2,27 кГц.

10. Какими будут графики зависимости средней крутизны (или коэффициента передачи усилителя) от напряжения на входе усилителя при разных положениях рабочей точки на ВАХ (в середине линейного участка и на нижнем загибе)?

11. Сформулировать условия баланса амплитуд и баланса фаз в установившемся режиме.

12. Каким образом по колебательной характеристике (рис. 6.11) определяется амплитуда стационарных колебаний?

13. Определить амплитуду стационарного колебания на выходе RC-генератора с лестничной цепью обратной связи, если = = 14,5 мА/В, = 2 кОм, колебательная характеристика изображена на рис. 6.17.

Рис. 6.17

Ответ: = 11,6 В.

14. При каких условиях режим самовозбуждения автогенератора является мягким (жестким)?

15. В чем отличие мягкого режима самовозбуждения автогенератора от жесткого режима? Пояснить по графикам рис. 6.14 и рис. 6.15.

16. Каким образом объединить достоинства мягкого и жесткого режимов самовозбуждения?

Список литературы

1. Бакалов В.П., Воробиенко П.П., Крук Б.И. Теория электрических цепей: Учебник для вузов; Под ред. В.П. Бакалова. – М.: Радио и связь, 1998.

2. Бакалов В.П., Игнатов А.Н., Крук Б.И. Основы теории электрических цепей и электроники: Учебник для вузов. – М.: Радио и связь, 1989.

3. Бакалов В.П., Крук Б.И., Журавлева О.Б. Теория электрических цепей: Учебное пособие для дистанционного обучения. – Новосибирск: СибГАТИ, 1998.

4. Krouk B.I., Zhuravleva O.B. Fundamentals of communication technique: Manual for universities and colleges. – Novosibirsk: SibSATI, 1998.

5. Крук Б.И. Методические указания к самостоятельной работе студентов над курсом ТЭЦ, часть II. Анализ линейных цепей в частотной области. – Новосибирск: НЭИС, 1989.

Конструкция и принцип работы автомобильных генераторов и генераторов

АВТО ТЕОРИЯ

ГЕНЕРАТОРЫ И ГЕНЕРАТОРЫ

В статье прошлого месяца были рассмотрены принципы работы с электричеством постоянного тока и принцип работы аккумулятора вашего автомобиля. Теперь мы можем перейти к тому, как заряжается эта батарея. В старых автомобилях (примерно до 1964 года) это было сделано с помощью генератора. По истечении этого времени все автомобили перешли на генераторы, и причины перехода станут понятны.Посмотрим, как работает каждый. Во-первых, генератор:

Схема генератора

.

Основной принцип работы здесь заключается в том, что электричество производит магнетизм. И наоборот, магнетизм производит электричество. Если на стальной стержень поместить катушку с током, стержень намагнитится. Чем больше витков провода и сильнее ток, тем мощнее магнит. Помещая сердечник из мягкого железа внутрь катушки, силовые линии магнитного поля концентрируются и усиливаются.Поскольку в железе меньше электрическое сопротивление (помните сопротивление?), Чем в окружающем воздухе, силовые линии будут следовать за сердечником.

Две полюсные колодки генератора сконструированы таким образом. Вместо того, чтобы использовать магниты, которые тяжелые и дорогие, вокруг полюсных наконечников наматывается много витков провода. Когда через эти обмотки проходит ток, полюсные наконечники становятся электромагнитами, называемыми ПОЛЕВЫМИ КАТУШКАМИ. Эти две катушки возбуждения соединены последовательно (ток проходит через одну, а затем через другую) и намотаны так, что одна становится северным полюсом, а другая — южным полюсом магнитного поля.

Схема генератора

.

Внутри генератора находится вращающийся центральный вал, который опирается на подшипники с каждого конца. Петли из проволоки (обмотки якоря) наматываются на специальный ламинированный держатель, который называется АРМАТУРА. Якорь поворачивают, помещая шкив на один конец вала и приводя его в движение клиновым ремнем от коленчатого вала двигателя, как показано на рисунке.

К якорю прикреплены сегменты электрического контакта, называемые КОММУТАТОРОМ. Эти сегменты электрически изолированы от якоря и друг от друга, но каждый припаян к одной из обмоток якоря.Это коммутатор, который распределяет электричество по якорю в режиме включения-выключения, создавая магнитное поле вокруг якоря. По вращающимся сегментам коллектора ездят угольные «щетки». Эти щетки удерживаются в подпружиненных скобах, и это давление удерживает их напротив коллектора. Это щетки, которые со временем изнашиваются и требуют замены.

Как все работает

Когда якорь генератора впервые начинает вращаться, в железных полюсных наконечниках возникает слабое остаточное магнитное поле.По мере вращения якоря в нем начинает расти напряжение. Часть этого напряжения подается на обмотки возбуждения через регулятор генератора (обычно называемый РЕГУЛЯТОРОМ НАПРЯЖЕНИЯ, объяснение которого приведено в следующей статье). Это приложенное напряжение создает более сильный ток обмотки, увеличивая силу магнитного поля. Увеличенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. Это напряжение, конечно, может продолжать расти бесконечно, но оно ограничено (регулированием) до заранее установленного пика. Здесь все звучит как вечный двигатель, не так ли? Однако помните, что энергия, приводящая в движение все это, — это коленчатый вал двигателя!

Изучите иллюстрацию и ознакомьтесь с деталями генератора. Следует отметить, что наиболее частая поломка генератора — это щетки. Во-вторых, выход из строя подшипника, особенно подшипника рядом с ведущим шкивом (неправильное натяжение ремня ускоряет выход этого подшипника из строя!)

Основным механизмом отказа генераторов является неправильная установка нового или восстановленного.С механической точки зрения установка несложная, но с электрической точки зрения все сложнее. Когда генератор остановился в последний раз, в полюсных наконечниках остался остаточный магнетизм. Полярность туфель в то время зависела от направления тока в обмотках катушки возбуждения. Если — во время тестирования и восстановления — ток течет в противоположном направлении, полюсные наконечники изменят полярность. Если генератор затем запустить в автомобиле, обратная полярность приведет к тому, что ток будет течь в неправильном направлении, что приведет к повреждению регулятора и разрядке аккумулятора, когда автомобиль оставлен на ночь. Поэтому все генераторы должны быть поляризованы после установки и перед запуском автомобиля. Для этого удерживайте один конец провода на клемме «аккумулятор» регулятора и царапая другой конец о выходную клемму генератора (для генераторов с внешним заземлением). Для генераторов с внутренним заземлением правильный способ поляризации — отсоединить «полевой» провод от регулятора и поцарапать им клемму «батареи» на регуляторе.

Генераторы

Схема генератора

.

Генераторы вырабатывают постоянный ток. Генераторы вырабатывают «переменный ток» или переменный ток. Преимущество генераторов в том, что они вырабатывают гораздо больший ток на низких скоростях, чем генераторы, что позволяет устанавливать в автомобиле все больше и больше аксессуаров. В генераторе «полевые» обмотки размещены вокруг вращающегося центрального вала, а не на «башмаках», как в генераторе. Два железных полюсных наконечника — отлитые «пальцами» — скользят по валу, закрывая обмотку возбуждения так, что пальцы находятся между собой. Пальцы одного полюса образуют северный полюс, а пальцы другого — южный полюс. Эта сборка называется РОТОР. Ротор окружен серией обмоток вокруг многослойных железных колец, прикрепленных к корпусу генератора. Эта сборка называется СТАТОР. Коленчатый вал двигателя раскручивает ротор.

Постоянный ток от аккумулятора подается в обмотку возбуждения ротора с помощью щеток, трущихся о контактные кольца. Один конец катушки возбуждения прикреплен к изолированной щетке, а другой конец — к заземленной щетке.Когда полюсные поля проходят через статор, ток создается электромагнитным путем (как в генераторе), но поскольку ротор состоит из чередующихся северных и южных полюсов, создаваемый ток течет в противоположном направлении каждые 180 градусов вращения. Другими словами, ток «переменный».

Почему это эффективнее? Обмотки статора состоят из трех отдельных обмоток. Это производит так называемый трехфазный переменный ток. Когда используется только одна обмотка, возникает однофазный ток (как в генераторе). Фактически, генератор вырабатывает в три раза больше тока, чем генератор, при том же усилии со стороны двигателя. Кроме того, генераторы намного легче и меньше генераторов.

Но есть небольшая проблема с генераторами. Электричество переменного тока не работает в машине! Электрическая система автомобиля — и аккумулятор — нуждаются в постоянном токе. Следовательно, выход генератора переменного тока «выпрямляется» в постоянный ток. Это делается путем подачи переменного тока на кремниевые диоды. Диоды обладают особой способностью позволять току свободно течь только в одном направлении, останавливая поток, если направление меняется на противоположное.В генераторах переменного тока расположено несколько диодов, так что ток будет течь от генератора к батарее (только в одном направлении, создавая постоянный ток), но не от батареи к генератору.

В реальных условиях регулятор напряжения определяет напряжение аккумулятора и общую нагрузку на электрическую систему автомобиля. Когда требуется зарядка, регулятор подает напряжение аккумулятора на щетки статора, и это создает электрическое поле для зарядки. Поскольку потребность системы в зарядке уменьшается, напряжение на щетках отключается.Все это происходит много раз в минуту, при этом система постоянно включается и выключается, чтобы поддерживать оптимальную эффективность работы.

В нашей следующей статье мы рассмотрим регуляторы напряжения и то, как они работают.

data-matched-content-ui-type = «image_card_stacked»
data-matched-content-rows-num = «3»
data-matched-content-columns-num = «1»
data-ad-format = «autorelaxed»>

Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, заставляет электрические заряды течь, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка / рама

Описание основных компонентов генератора приводится ниже.

Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(а) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Меньшие двигатели обычно работают на бензине, тогда как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», является частью генератора, который вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он состоит из неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом. Полностью металлическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор переменного тока, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае малых блоков генератора, топливный бак является частью занос базы генератора или смонтирован на верхней части корпуса генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака следите за тем, чтобы между заправочной форсункой и топливным баком был металлический контакт, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время наполнения бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр. Он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.

Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — теперь обмотки возбудителя работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — теперь ротор / якорь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньше постоянного тока. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, ровно столько, чтобы поддерживать выходную мощность генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это заставляет регулятор напряжения действовать, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве охлаждающей жидкости для обмоток статора крупных генераторных установок, поскольку он более эффективно поглощает тепло, чем другие охлаждающие жидкости. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон от генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливают из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно присоединяются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, потребуется ли для эксплуатации вашего генератора получение разрешения от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.

Система смазки
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазочного материала и менять смазочное масло каждые 500 часов работы генератора.

Зарядное устройство
ST e art функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо настроек или изменений. Выходное напряжение постоянного тока зарядного устройства составляет 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство батареи имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.

Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции на панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и выключение — Панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически выключают агрегат, когда он больше не нужен.

(b) Манометры двигателя — различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основная сборка / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, обеспечивающие структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Электрогенератор

— конструкция, работа, типы и применение

Электрогенератор был изобретен до того, как была обнаружена взаимосвязь между электричеством и магнетизмом.Эти генераторы используют электростатические принципы для работы с помощью пластин, движущихся лент, которые заряжаются электрически, а также дисков, переносящих заряд к электроду с высоким потенциалом. Генераторы используют два механизма для генерации заряда, такие как трибоэлектрический эффект, иначе электростатическая индукция. Таким образом, он генерирует низкий ток, а также очень высокое напряжение из-за сложности изолирующих машин, а также их неэффективности. Номинальная мощность электростатических генераторов низкая, поэтому они никогда не использовались для выработки электроэнергии.На практике этот генератор используется для питания рентгеновских трубок, а также ускорителей атомных частиц.

Что такое электрический генератор?

Альтернативное название электрического генератора — динамо-машина для передачи, а также распределения энергии по линиям электропередачи для различных приложений, таких как домашнее, промышленное, коммерческое и т. Д. Они также применимы в самолетах, автомобилях, поездах, кораблях для выработки электроэнергии. электричество. Для электрического генератора механическая мощность может быть получена через вращающийся вал, который эквивалентен крутящему моменту вала, который умножается с использованием угловой скорости или скорости вращения.

Механическая энергия может быть получена из различных источников, таких как гидротурбины на водопадах / плотинах; паровые турбины, газовые турбины и ветряные турбины, где пар может генерироваться за счет тепла от воспламенения ископаемого топлива, иначе — за счет ядерного деления. Газовые турбины могут сжигать газ непосредственно внутри турбины, в противном случае дизельные двигатели и бензин. Конструкция генератора, а также его скорость могут изменяться в зависимости от характеристик механического первичного двигателя.

Генератор — это машина, преобразующая механическую энергию в электрическую.Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей. Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем. Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле
Характеристики

Основные характеристики электрических генераторов включают следующее.

Мощность

Выходная мощность электрогенератора находится в широком диапазоне. Выбрав идеальный генератор, можно легко удовлетворить требования высокой и низкой мощности за счет одинаковой выходной мощности.

Топливо

Для электрогенераторов доступны несколько вариантов топлива, таких как бензин, дизельное топливо, сжиженный нефтяной газ, природный газ.

Портативность

Электрические генераторы портативны, потому что у них есть ручки и колеса.Таким образом, их можно легко перемещать из одного места в другое.

Шум

В некоторых генераторах используется технология шумоподавления, позволяющая снизить шумовое загрязнение.

Конструкция электрогенератора

Конструкция электрогенератора может быть выполнена с использованием различных частей, таких как генератор переменного тока, топливная система, регулятор напряжения, система охлаждения и выпуска, система смазки, зарядное устройство, панель управления, рама или основной узел.

Генератор

Преобразование энергии, которое происходит в генераторе, известно как генератор переменного тока.Это включает в себя как неподвижные, так и движущиеся части, которые работают вместе, чтобы генерировать электромагнитное поле, а также поток электронов для выработки электричества.

Топливная система

Топливная система в генераторе используется для выработки необходимой энергии. Эта система состоит из топливного насоса, топливного бака, возвратного патрубка и патрубка, который используется для соединения двигателя и бака. Топливный фильтр используется для удаления мусора до того, как он достигнет двигателя, а форсунка заставляет топливо течь в камеру сгорания.

Двигатель

Основная функция двигателя — подавать электроэнергию в генератор. Диапазон мощности, вырабатываемой генератором, может определяться мощностью двигателя.

Регулятор напряжения

Этот компонент используется для управления напряжением вырабатываемого электричества. При необходимости он также преобразует электричество переменного тока в постоянный.

Системы охлаждения и выхлопа

Как правило, генераторы выделяют много тепла, поэтому для уменьшения тепла от перегрева машины используется система охлаждения.Выхлопная система используется для устранения дыма во время ее работы.

Система смазки

В генераторе есть несколько небольших, а также движущихся частей, которые необходимы для их достаточной смазки с использованием моторного масла, чтобы обеспечить плавную работу, а также защитить от чрезмерного износа. Уровни смазки следует часто проверять каждые 8 ​​часов процесса.

Зарядное устройство для аккумуляторов

Аккумуляторы в основном используются для питания генератора.Это полностью автоматический компонент, который используется для обеспечения готовности батареи к работе в случае необходимости, обеспечивая ее стабильным низким напряжением.

Панель управления

Панель управления используется для управления всеми функциями генератора во время работы от начала до конца. Современные устройства способны определять, когда генератор автоматически включается / выключается.

Рама / основной узел

Рама — это корпус генератора и часть, в которой конструкция удерживает все это на месте.

Работа электрического генератора

Генераторы в основном представляют собой катушки электрических проводников, обычно из медной проволоки, которые плотно намотаны на металлический сердечник и установлены с возможностью поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать поток электрического тока внутри него.

Электрический генератор

Катушка проводника и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по магнитному полю.

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь поворачивается, он начинает повышать напряжение. Часть этого напряжения подается на обмотки возбуждения через регулятор генератора. Это впечатляющее напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля.

Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря.В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Как электрический генератор вырабатывает электричество?

На самом деле электрические генераторы не производят электричество; вместо создания они меняют энергию с механической на электрическую или с химической на электрическую. Это преобразование энергии может быть выполнено путем захвата энергии движения и преобразования ее в электрическую форму путем выталкивания электронов из внешнего источника с помощью электрической цепи.Электрогенератор в основном работает в обратном направлении от двигателя.

Некоторые генераторы, которые используются на плотине Гувера, будут обеспечивать огромное количество энергии за счет передачи энергии, создаваемой турбинами. Генераторы, которые используются как в коммерческих, так и в жилых помещениях, очень малы по размеру, но для выработки механической энергии они зависят от различных источников топлива, таких как газ, дизельное топливо, а также пропан.

Эту мощность можно использовать в цепи для наведения тока.
После того, как этот ток был создан, он направляется с помощью медных проводов для питания внешних устройств, иначе машин целых электрических систем.

Современные генераторы используют принцип электромагнитной индукции Майкла Фарадея, потому что он обнаружил, что, когда проводник вращается в магнитном поле, могут образовываться электрические заряды, создающие ток. Электрический генератор связан с тем, как водяной насос нагнетает воду по трубе.

Типы электрогенераторов

Генераторы подразделяются на типы.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока

Их также называют генераторами переменного тока.Это наиболее важный способ производства электроэнергии во многих местах, поскольку в настоящее время все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный генератор и синхронный генератор.

Индукционный генератор не требует отдельного возбуждения постоянного тока, регулятора, регулятора частоты или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, вызывая ток и напряжение.Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока даже при отсутствии нагрузки.

Генератор переменного тока

Синхронные генераторы — это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающегося якоря. У вращающегося якоря якорь находится у ротора, а поле у ​​статора. Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью.Генератор переменного тока с вращающимся полем широко используется из-за его высокой мощности выработки и отсутствия контактных колец и щеток.

Могут быть как трехфазные, так и двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения. Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение, полностью независимое от другого. Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что индуцированное напряжение в любой одной фазе смещается на 120º относительно двух других.

Их можно подключать как треугольником, так и звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква дельта (Δ). При соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений. Соединение «звезда» обозначается буквой Y.

Эти генераторы комплектуются двигателем или турбиной, которые могут использоваться в качестве мотор-генераторной установки и использоваться в таких приложениях, как военно-морской флот, добыча нефти и газа, горнодобывающая техника, ветряные электростанции и т. Д.

Преимущества

К преимуществам генераторов переменного тока можно отнести следующее.

  • Эти генераторы обычно не требуют технического обслуживания из-за отсутствия щеток.
  • Легко повышайте и понижайте через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше, чем выключатели постоянного тока

Генераторы постоянного тока

Генераторы постоянного тока обычно используются вне сети.Эти генераторы обеспечивают бесперебойную подачу питания непосредственно в устройства хранения электроэнергии и электрические сети постоянного тока без использования нового оборудования. Сохраненная мощность передается нагрузкам через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как батареи, как правило, стимулируют восстановление значительно большего количества топлива.

Генератор постоянного тока

Классификация генераторов постоянного тока

Генераторы постоянного тока

классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

  • Генераторы постоянного тока с постоянным магнитом
  • Генераторы постоянного тока с раздельным возбуждением и
  • Генераторы постоянного тока с самовозбуждением.

Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность.

Применяются в гальванических и электролитических рафинировках. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле после запуска. Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Опять же, эти генераторы постоянного тока с самовозбуждением подразделяются на шунтовые, последовательные и составные генераторы.

Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычное освещение и т. Д.

Преимущества

Преимущества генератора постоянного тока заключаются в следующем.

  • В основном машины постоянного тока обладают большим разнообразием рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмоток возбуждения.
  • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшему количеству колебаний, что желательно для некоторых приложений в установившемся режиме.
  • Нет необходимости в защите от излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.

Другие типы электрических генераторов

Генераторы подразделяются на различные типы, такие как переносные, резервные и инверторные.

Переносной генератор

Они чрезвычайно используются в различных приложениях и доступны в различных конфигурациях с изменением мощности. Они полезны при обычных бедствиях после выхода из строя электросети. Они используются в жилых, небольших коммерческих учреждениях, таких как магазины, торговые точки, на стройплощадках, чтобы обеспечивать электроэнергией небольшие инструменты, свадьбы на открытом воздухе, кемпинг, мероприятия на открытом воздухе и обеспечивать питание сельскохозяйственных устройств, таких как скважины, в противном случае системы капельного орошения.

Этот тип генератора работает на дизельном топливе, в противном случае — на газе, чтобы обеспечить кратковременную электроэнергию. Основные характеристики портативного генератора:

  • Он проводит электричество с помощью двигателя внутреннего сгорания.
  • Может подключаться к разным инструментам и приборам через розетки.
  • Может быть подключен к субпанелям.
  • Используется в отдаленных районах.
  • Он потребляет меньше энергии для работы морозильной камеры, телевизора и холодильника.
  • Скорость двигателя должна быть 3600 об / мин, чтобы выдавать типичный ток с частотой 60 Гц.
  • Обороты двигателя можно контролировать с помощью оператора.
  • Он обеспечивает питание осветительных приборов, а также инструменты.
Инверторный генератор

В этом типе генератора используется двигатель, подключенный к генератору переменного тока для выработки электроэнергии переменного тока, а также выпрямитель для преобразования переменного тока в постоянный. Они используются в холодильниках, кондиционерах, автомобилях-лодках, которые требуют значений определенной частоты, а также напряжения.Они доступны в менее тяжелых и твердых. Характеристики этого генератора в основном включают следующее.

  • Это зависит от современных магнитов.
  • Использует более высокие электронные схемы.
  • Он использует 3 фазы для выработки электроэнергии.
  • Обеспечивает стабильную подачу тока на устройство.
  • Он энергоэффективен, поскольку скорость двигателя регулируется в зависимости от требуемой мощности.
  • Когда он используется с подходящим устройством, его переменный ток может быть установлен на любое напряжение и частоту.
  • Они легкие и используются в автомобиле, лодке и т. Д.
Резервный генератор

Это один из видов электрической системы, которая используется для работы через автоматический переключатель резерва, который дает сигнал для включения устройства. потеря. К лучшим характеристикам резервного генератора можно отнести следующее.

  • Операция может выполняться автоматически.
  • Используется в системах безопасности для резервного освещения, лифтов, оборудования жизнеобеспечения, медицинских и противопожарных систем.
  • Обеспечивает стабильную защиту питания.
  • Постоянно контролирует энергоснабжение.
  • Каждую неделю автоматически выполняет самотестирование, чтобы проверить, правильно ли он реагирует на потерю питания.
  • Он состоит из двух компонентов, таких как автоматический переключатель и резервный генератор.
  • Он обнаруживает потерю мощности за секунды и увеличивает электроэнергию.
  • Он работает с использованием природного газа или жидкого пропана.
  • Внутри используется двигатель внутреннего сгорания.
Промышленные генераторы

Промышленные генераторы отличаются от коммерческих и жилых помещений. Они прочные и прочные, которые работают в суровых условиях. Характеристики источника питания будут варьироваться от 20 кВт до 2500 кВт, 120-48 В и от 1-фазного до 3-фазного источника питания.

Обычно они более индивидуализированы по сравнению с другими типами. Классификация этих генераторов может быть сделана на основе топлива, используемого для работы двигателя, чтобы можно было вырабатывать электроэнергию.В качестве топлива используется природный газ, дизельное топливо, бензин, пропан и керосин.

Индукционные генераторы

Эти генераторы бывают двух типов: самовозбуждаемые и внешне возбуждаемые. Самовозбуждающиеся используются в ветряных мельницах, где ветер используется как нетрадиционный источник энергии, который преобразуется в электрическую энергию. Внешнее возбуждение используется в приложениях с рекуперативным торможением, таких как краны, подъемники, электровозы и лифты.

Техническое обслуживание электрогенератора

Техническое обслуживание электрогенератора практически аналогично всем типам двигателей.Для каждого производителя очень важно знать, как обслуживаются все генераторы. Нормальное техническое обслуживание — это общий осмотр, такой как проверка на утечки, уровни охлаждающей жидкости, проверка шлангов и ремней, кабелей и клемм аккумулятора. Важно проверять масло, чтобы его часто менять. Частота замены масла в основном зависит от производителя, от того, как часто оно используется. Если в генераторе используется дизельное топливо, необходимо заменить масло на 100 часов работы.

Один раз в год фильтрация и очистка топлива очень быстро ухудшают качество дизельного топлива.После нескольких дней эксплуатации это топливо может разлагаться из-за загрязнения воды и микробов, что приводит к засорению топливопроводов, а также фильтров. При очистке топлива используются биоциды в год во всех типах генераторов, кроме резервного генератора, где он будет притягивать сырость.

Систему охлаждения следует обслуживать, потому что она требует проверки уровня охлаждающей жидкости через доступные интервалы во время простоя.

Заряд батареи необходимо проверить, поскольку проблемы с батареей могут вызвать сбои.Регулярное тестирование необходимо для определения текущего состояния батареи. Он включает в себя проверку уровней электролита, а также точную плотность электрических батарей.

Также очень важно отключать генератор на 30 минут еженедельно под нагрузкой. Удалите излишки влаги, смажьте двигатель и отфильтруйте топливо, а также фольгу. Если какие-либо подвижные части, найденные где-либо на генераторе, должны быть стабильно расположены внутри.

Для дальнейшего осмотра, нужно вести записи, чтобы знать состояние вашего генератора.

Приложения

Приложения электрогенераторов включают следующее.

  • В разных городах генераторы обеспечивают питание большинства электросетей
  • Они используются на транспорте
  • Малые генераторы служат отличным резервом для удовлетворения потребностей в электроэнергии в домашних условиях, в противном случае малые предприятия
  • Они используются для привода электродвигателей
  • Они используются перед подачей электроэнергии на строительных площадках.
  • Используются в лабораториях для определения диапазона напряжений.
  • Энергоэффективность, например, использование топлива, может быть значительно снижено
Недостатки

Главный недостаток — они не могут остановить сильные колебания напряжения, по этой причине, обычные генераторы не подходят для работы с потребителями, чувствительными к напряжению, такими как ПК. ноутбуки, телевизоры или музыкальные системы, потому что они могут повредить их в плохом случае.

Итак, это обзор электрогенератора.Электрогенератор работает по принципу электромагнитной индукции. Этот принцип был открыт Майклом Фарадеем. В основном генераторы представляют собой катушки с электрическими проводниками или медную проволоку. Этот провод плотно наматывается на металлический сердечник и помещается примерно так, чтобы вращаться в экспонате из больших магнитов.

Электрический проводник вращается в магнитном поле, и магнетизм соединяется через электроны внутри проводника, вызывая в нем ток. Здесь катушка проводника, а также ее сердечник называются якорем.Он подключен к валу источника питания. Теперь вы четко разобрались в принципах работы и типах генераторов. Кроме того, любые дополнительные вопросы по этой теме или по электрическим и электронным проектам оставляйте комментарии ниже.

Электрогенератор

Источник изображения: topalternative

Принципы работы автоматического резерва

Обновлено 9 сентября 2019 г. перенаправить питание в особых случаях.Например, во время стихийного бедствия в больнице может отключиться электроэнергия, и автоматический переключатель питания запустит резервный генератор. Такой переход сопряжен с множеством проблем, не последняя из которых — это принятие решения о том, когда безопасно снова переключиться на энергоснабжение коммунальных предприятий.

ATS используются для обеспечения непрерывности подачи питания, хотя в разных ситуациях это может означать разные вещи. В обычном доме, на небольшом предприятии или учреждении постоянное электроснабжение может означать, что можно допустить кратковременное отключение.

Например, если резервный генератор используется для обеспечения резервного питания в случае сбоя в электроснабжении коммунального предприятия, во время запуска генератора будет пауза. В больнице любой перерыв более чем на несколько секунд может иметь катастрофические последствия.

Существует несколько способов, с помощью которых ATS может гарантировать, что прерывание будет очень коротким — включая батареи, чтобы заполнить промежуток от прекращения подачи электроэнергии в коммунальном хозяйстве до начала подачи резервного генератора. Некоторые автоматические выключатели обнаруживают временные провалы и всплески напряжения в коммунальном хозяйстве, которые предшествуют отказу, и запускают генератор до полного отказа общественного питания.

Инженеры обычно устанавливают автоматические переключатели для переключения нагрузки между двумя различными источниками электрического тока. Некоторые из них являются ручными и могут быть активированы, когда пользователь щелкает переключателем, в то время как другие, например, автоматические переключатели передачи, переключаются в зависимости от того, как изменяется источник питания. Когда источник электроэнергии выходит из строя, автоматический переключатель резерва может сработать, чтобы запитать здание.

Принципы управления автоматическим запуском

ATS может контролировать, когда резервный генератор зависит от напряжения в первичном источнике питания здания.При этом они также должны передать нагрузку на резервный генератор. Они работают, не позволяя резервному генератору стать источником электроэнергии до тех пор, пока сам генератор не будет включен на временное питание.

Одним из примеров пошагового процесса, который может использовать ATS, является:

  1. Когда в здании пропадает электроэнергия, ATS запускает резервный генератор. Это заставляет генератор быть готовым к подаче электроэнергии в дом.
  2. Когда генератор готов к работе, АВР переключает аварийное питание на нагрузку.
  3. Затем АВР выдает команду генератору на отключение при восстановлении электроснабжения.

При сбое питания автоматический переключатель резерва подает команду на запуск генератора. Когда генератор готов к подаче электроэнергии, АВР переключает аварийное питание на нагрузку. После восстановления электроснабжения от электросети АВР переключается на электросеть и подает команду на отключение генератора.

Если в вашем доме есть АВР, управляющая резервным генератором, АВР запустит генератор при отключении электроэнергии, и резервный генератор начнет подавать питание.Инженеры обычно проектируют дома и переключатели таким образом, чтобы генератор оставался отдельным от системы, распределяющей мощность по всему зданию. Это защищает генератор от перегрузки. Еще одна защитная мера, которую используют инженеры, заключается в том, что они имеют время «остывания», чтобы предотвратить перегрев генератора.

Конструкции ATS иногда позволяют отключать нагрузку или изменять приоритет других цепей. Это позволяет электричеству и мощности циркулировать способами, которые более оптимальны или полезны для целей здания.Эти опции могут быть полезны для предотвращения перегрева или перегрузки генераторов, печатных плат контроллера двигателя и других компонентов электричеством.

Мягкая нагрузка — это метод, который упрощает переключение нагрузки от электросети к синхронизированным генераторам, что также может минимизировать потери напряжения во время этих переключений.

Создайте свою собственную печатную плату с автоматическим переключателем

Инженеры по энергосистеме и электротехнике обладают знаниями, опытом и навыками для создания собственных автоматических переключателей.Лица, не обладающие такими полномочиями или квалификациями, не должны пытаться создать свои собственные, поскольку они не обладают необходимой подготовкой. Тем не менее, есть способы сделать свои собственные панели управления автоматическими выключателями для обработки электрических сигналов между устройствами для различных целей.

Это требует общего оборудования, используемого в электротехнических процессах, включая сам автоматический переключатель резерва, печатную плату, счетчик переменного тока, автоматические выключатели, шины, DIN-рейки, светодиодные фонари и паяльное оборудование.Не выполняйте эти действия, если у вас нет мер безопасности, чтобы защитить себя от электрического тока.

Общие шаги по изготовлению собственной печатной платы с автоматическим переключателем:

  1. Установите DIN-рейку для установки автоматических выключателей в контейнер, который будет корпусом автоматического переключателя. DIN-рейки используются при создании устройств и электроники, в которых используется промышленное оборудование, такое как печатные платы и провода. Убедитесь, что он плотно закреплен, и в нем есть отверстие для пропуска кабелей в контейнер.
  2. Затем можно установить шины нейтрали и заземления. Эти шины используются в качестве выключателей, металлических полос, которые используются в коммутационном оборудовании, чтобы позволить току надлежащим образом распределяться по всему оборудованию. Вы также можете использовать соответствующие изоляционные материалы, чтобы убедиться, что потенциал между нейтралью и шиной защитного заземления всегда равен нулю. Это важно для размыкания и замыкания цепей между генераторами путем обнаружения разницы в мощности между ними.
  3. Подсоедините шины к вашей установке.Вы можете использовать многожильный провод, чтобы предотвратить значительное падение напряжения между автоматическими выключателями автоматического резерва и остальной частью вашей установки.
  4. Если хотите, вы можете добавить светодиодные индикаторы между выключателями и входящими источниками питания. Это поможет вам определить, включен выключатель или нет.
  5. Добавьте к установке сам автоматический переключатель резерва и счетчик переменного тока. Трансформатор, изменяющий ток, должен находиться на выходе автоматического резерва.Измеритель переменного тока должен определять, какое напряжение используется в установке. Держите его плотно и надежно, чтобы предотвратить утечку напряжения и другие проблемы.
  6. Проверьте вашу установку на безопасность перед ее внедрением. Если есть избыточное тепло от резисторов, которое может вызвать такие проблемы, как перегрев, обязательно устраните это, изменив сопротивление или используя дополнительные меры безопасности, такие как изменение настройки автоматических выключателей.

Как автоматические переключатели работают с несколькими генераторами?

В установках ATS можно использовать несколько генераторов для защиты электрических операций, которые происходят одновременно в областях, удаленных друг от друга.Эти системы используют несколько установок АВР, чтобы действовать так, как если бы был один АВР с одним генератором. Это позволяет системам ATS работать с несколькими генераторами, например, для различных зданий или различных архитектурных проектов.

Каждой АВР нужен контроллер, чтобы обеспечить безопасную и эффективную передачу энергии между источниками энергоснабжения и генераторами. Их нужно проверить в обоих направлениях и соответственно распределить мощность. Им необходимо убедиться, что они принимают во внимание даже незначительную разницу во времени между питанием разных зданий или разных генераторов.Для некоторых операций даже миллисекунды без питания могут нанести вред целям различных строительных конструкций.

Какие типы автоматических переключателей бывают?

В дополнение к схемам АВР с плавной нагрузкой, существуют конструкции открытого перехода , закрытого перехода и статического переключателя резерва для различных целей переключателей резерва. Открытые безобрывные переключатели, включая АВР, или безобрывные переключатели срабатывают, прекращая контакт с одним источником энергии и создавая контакт с другим.Это предотвращает нежелательное обратное питание, протекание электрического тока в нежелательном направлении, а также использование энергии от двух источников, которые конкурируют друг с другом.

Напротив, замкнутые безобрывные или замыкающие переключатели передают мощность, не вызывая каких-либо прерываний. Это особенно полезно для зданий и электрического оборудования, которые полагаются на свою мощность таким образом, что даже прерывание на долю секунды может быть вредным. В отличие от переключателей с разомкнутым передаточным числом, переключатели с замкнутым питанием находят способы нагружать мощность, чтобы убедиться, что генератор может подавать и подает питание, прежде чем разорвать соединение одного источника питания с другим.

Эти типы переключателей более сложны, чем разомкнутые, и им необходимо контролировать поток мощности во время перехода и отводить мощность — с помощью байпасных конденсаторов — для предотвращения обратного тока.

Инженеры называют различные источники энергии синхронизированными, если разница напряжений между ними составляет менее 5% или разница частот составляет менее 0,2 Гц. Изохронные регуляторы управляют этим сдвигом мощности. Замкнутые переключатели гарантируют, что такая передача мощности может происходить в этих условиях, а иногда и в течение времени менее 100 миллисекунд.Эти переключатели превратятся в разомкнутые безводные переключатели, если замкнутое переключение невозможно.

Наконец, статические переключатели передачи используют полупроводники, такие как выпрямители с кремниевым управлением, для переключения нагрузок между источниками. Эти установки используют энергию движения электронов в этих полупроводниках, чтобы передача происходила почти мгновенно. Они очень надежны и работают независимо от доступных источников питания, но их необходимо протестировать, чтобы защитить нагрузку от перебоев с частотой сети.

Роль пускателя двигателя в ATS

При определении размера ATS и принципов управления автоматическим запуском, которые необходимо использовать, инженеры принимают во внимание различные типы тока. Пускатель двигателя и его назначение в системе регулируют пусковой ток , величину тока, которую схема использует для подачи питания на устройство с питанием от переменного тока при первой подаче на него тока.

Самодельные схемы автоматического включения резерва

Дома используют АВР как часть своей аварийной системы с помощью этих методов.Инженеры и архитекторы проектируют их так, чтобы они были надежными, адаптируемыми, эффективными, действенными и невосприимчивыми к повреждениям. Они регулярно проверяют способы передачи нагрузок в домах, чтобы убедиться, что они работают надлежащим образом.

Конструкции ATS варьируются от использования нескольких цепей до всего дома при использовании в архитектуре дома. Два автоматических выключателя могут работать вместе одновременно, чтобы обеспечить переключение без потери напряжения или мощности. Автоматические переключатели выполняют это переключение, и после восстановления питания они используют процесс «охлаждения», чтобы предотвратить перегрев.

Такие компании, как Generac, обычно предлагают системы ATS на 100 или 200 ампер. Они могут стоить более 600 долларов.

Установка автоматического включения резерва генератора

Электростанции используют закрытые выключатели, как и дома, для своих нужд. Исследования или оборудование, которые полагаются на непрерывное питание, используют автоматические переключатели резерва в более сложных схемах для удовлетворения своих уникальных потребностей. В процессе установки автоматического выключателя генератора необходимо использовать эти устройства для удовлетворения индивидуальных потребностей домашних хозяйств и зданий.

Инженеры-электрики могут сами создавать эти проекты для объектов и создавать диспетчерские для различных целей, например, в больницах или центрах обработки данных. Их также можно использовать в аварийном освещении, которое указывает людям на выход, когда это необходимо, в опасной вентиляции для удаления токсичных химикатов из помещений и даже в сигнализации при мониторинге объектов на предмет возгорания.

Принцип работы этих автоматических переключателей может включать в себя аварийные сигналы, которые сигнализируют о снижении мощности. Это дает команду автоматическим переключателям для запуска резервных генераторов, и после обнаружения того, что они запустились, установки распределяют мощность по зданию при проектировании установки автоматического переключателя включения генератора.

Некоторые производители АВР включают APC, Dell, Cummins Power Generation, General Electric и Western Telematic. Эти компании работают над тем, чтобы предлагать продукты с переключателями для различных целей, поддерживая и поддерживая их после установки.

Электрический генератор: основные сведения о том, как работают генераторы, их особенности и применение

Как работают электрические генераторы?

Электрогенератор — это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или напрямую подаваться в дома, магазины, офисы и т. Д.Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа. Катушка проводника вместе с ее сердечником известна как якорь. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или за счет возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д.Когда катушка вращается, она разрезает магнитное поле, которое находится между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
  • Топливо: Для электрических генераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
  • Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, так что их можно легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов оснащены технологией снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов

  • Электрогенераторы полезны в домах, магазинах, офисах и т. Д., Которые часто сталкиваются с отключениями электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное питание устройств.
  • В отдаленных районах, где нет доступа к электричеству из основной сети, электрические генераторы действуют как основной источник питания.
  • При работе на проектных площадках, где невозможно получить электричество из сети, электрические генераторы могут использоваться для питания машин или инструментов.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки

(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и аналитику по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Генераторы и динамо

Развитие и история компонента, который первым сделал электричество
коммерчески осуществимо

Динамо
Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо
— устройство, вырабатывающее постоянного тока, электроэнергии с помощью электромагнетизма.
Он также известен как генератор, однако термин «генератор» обычно
относится к «генератору переменного тока», который вырабатывает мощность переменного тока.

Генератор
— обычно этот термин используется для описания генератора , который
создает мощность переменного тока, используя электромагнетизм.

Генераторы,
Динамо и батареи — три инструмента, необходимые для создания / хранения
значительное количество электроэнергии для использования людьми.Аккумуляторы
возможно, был обнаружен еще в 248 году до нашей эры. Они просто используют химические
реакция на производство и хранение электричества. Ученые экспериментировали с
батарея для изобретения первых ламп накаливания, электродвигателей и
поезда и научные испытания. Однако батареи не были надежными или
рентабельно для любого обычного электрического использования, именно динамо-машина
радикально изменил электричество из диковинки в рентабельное, надежное
технологии.

1.
Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как
Это работает:

Базовый:

Для начала нужен механический
источник энергии, такой как турбина (приводимая в действие падающей водой), ветряк,
газовая турбина или паровая турбина. Вал от одного из этих устройств подключен
к генератору для выработки энергии.

Динамо и генераторы работают
используя дикие сложные явления электромагнетизма . Понимание
поведение электромагнетизма, его полей и его эффектов очень велико.
предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты
первая батарея, чтобы заработала хорошая мощная динамо-машина. Мы
поможет познакомить вас с интересным предметом
выработки электроэнергии.

В самом общем смысле
Генератор / динамо-машина — это один магнит, вращающийся во время воздействия
магнитного поля другого магнита. Вы не видите магнитное поле,
но это часто иллюстрируется линиями потока. На иллюстрации
над линиями магнитного потока будут следовать линии, созданные железом
документы.

Изготовлен генератор / динамо
сборка неподвижных магнитов (статор), создающих мощное магнитное поле,
и вращающийся магнит (ротор), который искажает и разрезает магнитный
магнитные линии статора.Когда ротор прорезает линии магнитного
поток делает электричество.

Но почему?

Согласно закону индукции Фарадея
если вы возьмете провод и будете двигать его вперед и назад в магнитном поле,
поле давит на электроны в металле. Медь имеет 27 электронов,
последние два на орбите легко переносятся на следующий атом. Это движение
электронов — это электрический поток.

Смотрите видео
ниже показано, как ток индуцируется в проводе:

Если взять много провода
например, в катушке и перемещая ее в поле, вы создаете более мощный
«поток» электронов.Мощность вашего генератора зависит
по телефону:

«л» -длина
проводник в магнитном поле
«v» — скорость проводника (скорость ротора)
«B» — сила электромагнитного поля

Вы можете производить расчеты, используя
эта формула: e = B x l x v

Смотрите видео
для демонстрации всего этого:

О магнитах:

Вверху: простой электромагнит
называется соленоидом.Термин «соленоид» на самом деле описывает
трубчатая форма, созданная витой проволокой.

Магниты обычно не
из природного магнетита или постоянного
магнит (если это не маленький генератор), но они медные или
алюминиевый провод, намотанный на железный сердечник. Каждая катушка должна быть под напряжением
с некоторой силой, чтобы превратить его в магнит. Эта спираль вокруг железа называется
соленоид. Соленоиды используются вместо природного магнетита, потому что
соленоид НАМНОГО мощнее.Небольшой соленоид может создать очень
сильное магнитное поле.

Выше:
Катушки с проволокой в ​​генераторах должны быть изолированы. Отказ генератора
вызвано слишком высоким повышением температуры, что приводит к поломке
изоляции и короткое замыкание между параллельными проводами. Подробнее о проводах>

Термины :
Электромагнетизм — изучение сил, которые
происходят между электрически заряженными частицами
Ротор — часть генератора динамо, которая вращается
Якорь — то же самое, что ротор
Поток — силовые линии в магнитном поле, это
измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе / динамо-машине, которые не двигаются,
они устанавливают стационарное магнитное поле
Соленоид — магнит, созданный катушкой из проволоки вокруг утюга / ферриса
сердечник (соленоид технически означает форму этого магнита, но
инженеры называют соленоид и электромагнит как синонимы.
Коммутатор — Узнайте больше о них здесь
Крутящий момент
— сила во вращательном движении

Динамо

Динамо это
старый термин, используемый для описания генератора постоянного тока
мощность
. Мощность постоянного тока отправляет электроны только в одном направлении. Проблема
с простым генератором заключается в том, что когда ротор вращается, он в конечном итоге
полностью поворачивается, меняя направление тока.Ранние изобретатели не
знать, что делать с этим переменным током, переменный ток
более сложные в управлении и проектировании двигателей и фонарей. Ранние изобретатели
пришлось найти способ улавливать только положительную энергию генератора,
поэтому они изобрели коммутатор. Коммутатор — это переключатель, позволяющий
ток течет только в одном направлении.

См.
видео ниже, чтобы увидеть, как работает коммутатор:

Динамо
состоит из 3 основных компонентов
: статора, якоря и
коммутатор.

Кисти входят в состав
коммутатора, щетки должны проводить электричество, поскольку
контакт с вращающимся якорем. Первые кисти были актуальны
проволочные «щетки» из мелкой проволоки. Они легко изнашивались
и они разработали графические блоки для выполнения той же работы.

The
Статор
представляет собой неподвижную конструкцию, которая делает магнитные
поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита.Для больших динамо требуется электромагнит.

Якорь изготовлен из спиральных медных обмоток, которые
вращаются внутри магнитного поля, создаваемого статором. Когда
обмотки движутся, они прорезают линии магнитного поля. Этот
создает импульсы электроэнергии.

Коммутатор
необходим для получения постоянного тока. В потоках мощности постоянного тока
только в одном направлении через провод, проблема в том, что
вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота,
поэтому коммутатор — это поворотный переключатель, который отключает питание
во время обратной текущей части цикла.

Самовозбуждение:

Так как магниты в динамо
являются соленоидами, для работы они должны быть запитаны. Так что помимо кистей
какая мощность крана выйти на главную цепь, есть другой набор
щеток для получения энергии от якоря для питания статора
магниты. Это нормально, если динамо-машина работает, но , как начать
динамо, если у вас нет мощности для запуска?

Иногда арматура сохраняет
некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает
небольшая мощность, достаточная для возбуждения соленоидов в статоре.Затем напряжение начинает расти, пока динамо-машина не наберет полную мощность.

Если нет магнетизма
осталось в железе якоря, чем часто используется аккумулятор для возбуждения
соленоиды в динамо-машине, чтобы начать. Это называется «поле»
мигает ».

Ниже в обсуждении
подключив динамо, вы заметите, как мощность проходит через соленоиды
иначе.

Есть два способа
проводка динамо: серия

рана и шунт
ранить.См. Диаграммы, чтобы узнать разницу.

Ниже видео небольшого
простая динамо-машина, похожая на схемы выше (построена в 1890-х годах):

Генератор

Генератор отличается от
динамо-машина в том, что она производит переменного тока . Электроны входят в
в обоих направлениях в сети переменного тока. Только в 1890-х годах инженеры
придумали, как проектировать мощные двигатели, трансформаторы и другие
устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током
мощность.

Пока генератор использует
коммутаторах, генератор использует контактное кольцо со щетками для постукивания по
выключение ротора. К контактному кольцу прикреплены графит или углерод.
«щетки», которые подпружинены, чтобы протолкнуть щетку на
звенеть. Это поддерживает постоянный поток энергии. Кисти изнашиваются
время и нуждаются в замене.

Ниже, видео
контактных колец и щеток, множество примеров от старого к новому:

Со времен Грамма
в 1860-х годах было выяснено, что лучший способ построить динамо-генератор
было расположить магнитные катушки по широкому кругу с широким вращением
арматура.Это выглядит иначе, чем простые небольшие примеры динамо
вы видите, как они используются в обучении работе устройств.

На фото ниже вы будете
хорошо видна одна катушка на якоре (остальные были сняты для обслуживания)
и другие катушки, встроенные в статор.

С 1890-х до наших дней
Трехфазное питание переменного тока было стандартной формой питания. Три фазы
сделано за счет конструкции генератора.

Для изготовления трехфазного генератора
вы должны разместить определенное количество магнитов на статоре и якоре,
все с правильным интервалом. Электромагнетизм так же сложен, как и
волны и вода, поэтому вам нужно знать, как контролировать поле через
ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита
к железному сердечнику, неправильные расчеты искажения магнитного
поле (чем быстрее вращается, тем сильнее искажается поле), ложный
сопротивление в катушках якоря и множество других потенциальных проблем.

Почему 3 фазы? если хочешь
Чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео
с пионером трансмиссии Лайонелом Бартольдом.

2.)
Краткая история динамо и генераторов:

Генератор
возникла из работ Майкла Фарадея и Джозефа
Генрих в 1820-х годах. Как только эти два изобретателя обнаружили и задокументировали
явления электромагнитной индукции, это приводит к экспериментам
другими как в Европе, так и в Северной Америке.

1832 —
Ипполит Пикси
(Франция) построил первую динамо-машину с помощью коммутатора,
его модель создавала электрические импульсы, разделенные отсутствием тока. Он
также случайно создали первый генератор переменного тока. Он не знал, что
что касается меняющегося тока, он сосредоточился на попытках устранить
переменный ток для получения постоянного тока, это привело его к созданию
коммутатор.

1830s-1860s — Аккумулятор по-прежнему является самым мощным источником питания
электричество для различных экспериментов, происходивших в этот период.Электричество по-прежнему было коммерчески нежизнеспособным. Электрический аккумулятор
поезд из Вашингтона в Балтимор потерпел неудачу, что стало большим затруднением
в новую область электричества. После миллионов долларов потраченного впустую пара
по-прежнему оказался лучшим источником энергии. Электричество все еще необходимо для
оказались надежными и коммерчески выгодными.

1860 — Антонио Пачинотти — Создал динамо-машину,
Источник питания постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более
мощная, более полезная динамо-машина, в которой использовался автономный электромагнит
в статоре вместо слабого постоянного магнита.

1871 — Зеноб Грамм зажег
коммерческая революция электричества. Он заполнил магнитное поле
железный сердечник, который лучше пропускал магнитный поток. Это увеличило
мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих
Приложения.

1870-е годы — Произошел взрыв новых конструкций динамо-машин, конструкций
варьировал дикий ассортимент, лишь немногие выделялись как превосходящие
эффективность.

1876 — Чарльз Ф. Браш
(Огайо)
разработал самую эффективную и надежную конструкцию динамо-машины
к этому моменту. Его изобретения продавались через Telegraph Supply.
Компания.

1877 — Франклин
Институт (Филадельфия) проводит испытания динамо-машин со всего мира.
Реклама этого события стимулирует развитие других, таких как Элиху
Томсон, лорд Кельвин и Томас
Эдисон.

Выше:
Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для
его системы постоянного тока 1884

1878
Компания Ganz начинает использовать генераторы переменного тока в небольших коммерческих
инсталляции в Будапеште.

1880 — Чарльз
F. Brush использовало более 5000 дуговых ламп , что
80 процентов всех ламп в мире. Экономическая сила электрического
возраст начался.

1880-1886
— Системы переменного тока разрабатываются в Европе совместно с Siemens,
Сабастиан Ферранти, Люсьен Голар и другие. Царство динамо-машин постоянного тока
на прибыльном американском рынке многие скептически относятся к
инвестировать в AC.Генераторы переменного тока были мощными, однако генератор
само по себе не было самой большой проблемой. Системы контроля и распределения
мощности переменного тока необходимо было улучшить, прежде чем она сможет конкурировать с
DC на рынке.

1886 — дюйм
изобретатели Североамериканского рынка, такие как Уильям
Стэнли
, Джордж Вестингауз, Никола Тесла и Элиху
Thomson разрабатывает собственный кондиционер
системы и конструкции генераторов.Большинство из них использовали Siemens
и генераторы Ферранти в качестве основы для изучения. Уильям Стэнли
быстро смог изобрести лучший генератор, будучи неудовлетворенным
с генератором Сименса, который он использовал в своем первом
эксперимент.

Выше:
Генераторы переменного тока Siemens, используемые в Лондоне в 1885 году, в США Эдисон не хотел
перейти в область питания переменного тока, в то время как в Европе технология развивалась
быстро.

1886-1891 — Полифазный
Генераторы переменного тока разработаны C.S. Bradly (США), August Haselwander.
(Германия), Михаил Доливо-Добровский (Германия / Россия), Галилео Феррарис
(Италия) и др. Системы переменного тока с улучшенным контролем и мощным
электродвигатели позволяют AC конкурировать.

1891 — трехфазный
Электропитание переменного тока оказалось лучшей системой для выработки электроэнергии и
распространение на Международном
Электротехническая выставка во Франкфурте.

Трехфазный
генератор конструкции Михаила Доливо-Добровского, использованный на выставке
виден слева.

1892 — Чарльз П. Стейнмец
представляет свой доклад AIEE по гистерезису. Понимание Штейнмеца
математики мощности переменного тока опубликована и помогает произвести революцию
Проектирование систем питания переменного тока, включая большие генераторы переменного тока.

1890-е — Генератор
дизайн
быстро улучшается благодаря коммерческим продажам и
имеющиеся деньги на исследования.Westinghouse, Siemens, Oerlikon,
и General Electric разрабатывают самые мощные генераторы в мире.
Некоторые генераторы все еще работают 115
лет спустя. (Механиквилл, Нью-Йорк)

Выше:
1894 Элиу Томсон разработал много
Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse 2000 кВт на 270 В от после
1900

3.Видео

Mechanicville
Генераторы с объяснением истории (1897), разработанные вдохновителем переменного тока
Чарльз П. Стейнмец

Генератор Вестингауза
сконструирован и испытан (1905 г.), разработан Оливером Шалленбергером, Tesla
и другие в Westinghouse.

1895 Первые мощные генераторы
используется в Фолсоме, Калифорния (разработан Элиху Томпсоном, доктором.Луи Белл и
другие в GE)

1891 Генератор производства
Oerlikon для Международной электротехнической выставки (дизайн
Добровольского в Германии)

Связанные темы:

Источники:
-The
История General Electric — Зал истории
, Скенектади, Нью-Йорк, 1989
Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — от General Electric
— История электроснабжения переменного тока — Технический центр Эдисона
— Руководство по электричеству Хокинса

Фото
/ Видео:
-Copyright 2011 Технический центр Эдисона.Снято в Немецком музее, Мюнхен.
. Некоторые генераторы сфотографированы в Техническом центре Эдисона в Скенектади.
NY

Генератор постоянного тока с постоянным магнитом

Генератор постоянного тока с постоянным магнитом
Статья
Учебники по альтернативной энергии
19.06.2010
27.07.2020

Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Генератор постоянного тока с постоянным магнитом в качестве ветряного генератора

Из предыдущего руководства по ветряной турбине мы знаем, что электрический генератор — это вращающаяся машина, которая преобразует механическую энергию, производимую лопастями ротора (первичный двигатель), в электрическую энергию или мощность.Это преобразование энергии основано на законах электромагнитной индукции Фарадея, которые динамически индуцируют э.д.с. (электродвижущая сила) в катушки генератора при его вращении. Существует множество различных конфигураций электрического генератора, но одним из таких электрических генераторов, который мы можем использовать в ветроэнергетической системе, является генератор постоянного тока с постоянным магнитом или генератор постоянного тока .

Машины с постоянным магнитом постоянного тока (DC) могут использоваться либо как обычные двигатели, либо как ветряные генераторы постоянного тока, поскольку конструктивно между ними нет принципиальной разницы.Фактически, одна и та же машина PMDC может приводиться в действие электрически, как двигатель для перемещения механической нагрузки, или она может приводиться в действие механически как простой генератор для генерации выходного напряжения. Это делает генератор постоянного тока с постоянными магнитами (генератор PMDC) идеальным для использования в качестве простого ветряного генератора.

Если мы подключим машину постоянного тока к источнику постоянного тока, якорь будет вращаться с фиксированной скоростью, определяемой подключенным напряжением питания и силой его магнитного поля, тем самым действуя как «двигатель», создающий крутящий момент.Однако, если мы механически вращаем якорь со скоростью, превышающей расчетную скорость двигателя, используя лопасти ротора, то мы можем эффективно преобразовать этот двигатель постоянного тока в генератор постоянного тока, производящий генерируемую выходную ЭДС, которая пропорциональна его скорости вращения и магнитному полю. сила.

Как правило, в обычных машинах постоянного тока обмотка возбуждения находится на статоре, а обмотка якоря — на роторе. Это означает, что у них есть выходные катушки, которые вращаются со стационарным магнитным полем, которое создает необходимый магнитный поток.Электроэнергия снимается непосредственно с якоря через угольные щетки с магнитным полем, которое регулирует мощность, подаваемую либо постоянными магнитами, либо электромагнитом.

Вращающиеся катушки якоря проходят через это стационарное или статическое магнитное поле, которое, в свою очередь, генерирует электрический ток в катушках. В генераторе постоянного тока с постоянными магнитами якорь вращается, поэтому весь генерируемый ток должен проходить через коммутатор или через контактные кольца и угольные щетки, обеспечивающие электрическую мощность на его выходных клеммах, как показано.

Типовая конструкция генератора постоянного тока

Простой генератор постоянного тока может быть сконструирован множеством способов в зависимости от соотношения и взаимосвязи каждой из катушек магнитного поля по отношению к якорю. Двумя основными соединениями для машины постоянного тока с самовозбуждением являются «Генератор постоянного тока с шунтирующей обмоткой», в котором основная обмотка возбуждения подключена по параллельно с якорем. «Генератор постоянного тока с последовательной обмоткой» имеет токоведущую обмотку возбуждения, соединенную в серии с якорем.Каждый тип конструкции генератора постоянного тока имеет определенные преимущества и недостатки.

• Генератор постоянного тока с шунтирующей обмоткой — в этих генераторах ток поля (возбуждения) и, следовательно, магнитное поле увеличивается с рабочей скоростью, поскольку зависит от выходного напряжения. Напряжение якоря и электрический крутящий момент также увеличиваются с увеличением скорости. Генератор с шунтовой обмоткой, работающий с постоянной скоростью при различных условиях нагрузки, имеет гораздо более стабильное выходное напряжение, чем генератор с последовательной обмоткой.Однако по мере увеличения тока нагрузки внутренние потери мощности на якоре вызывают пропорциональное уменьшение выходного напряжения.

В результате ток через поле уменьшается, уменьшая магнитное поле и вызывая еще большее падение напряжения, а если ток нагрузки намного выше, чем конструкция генератора, снижение выходного напряжения становится настолько серьезным, что приводит к большому внутреннему якорю потери и перегрев генератора. В результате генераторы постоянного тока с шунтирующей обмоткой обычно не используются для больших постоянных электрических нагрузок.

• Генератор постоянного тока с последовательной обмоткой — ток возбуждения (возбуждения) в генераторе с последовательной обмоткой совпадает с током, который генератор подает на нагрузку, поскольку они оба подключены последовательно. Если подключенная нагрузка мала и потребляет небольшой ток, ток возбуждения также невелик. Следовательно, магнитное поле обмотки последовательного возбуждения слишком слабое, и генерируемое напряжение также низкое. Аналогично, если подключенная нагрузка потребляет большой ток, ток возбуждения также будет высоким.Следовательно, магнитное поле обмотки последовательного возбуждения очень сильное, а генерируемое напряжение высокое. Одним из основных недостатков генератора постоянного тока с последовательной обмоткой является то, что он плохо регулирует напряжение, и в результате генераторы постоянного тока с последовательной обмоткой обычно не используются для колеблющихся нагрузок.

Самовозбуждающиеся генераторы постоянного тока серии с шунтовой обмоткой и с обмоткой имеют недостаток в том, что изменения тока нагрузки вызывают серьезные изменения выходного напряжения генератора из-за реакции якоря, и в результате эти типы генераторов постоянного тока редко используются в качестве генераторы ветряных турбин.Однако «составной» подключенный генератор постоянного тока имеет комбинацию как шунтирующих, так и последовательных обмоток, объединенных в один генератор, и которые могут быть соединены таким образом, чтобы производить «составной генератор постоянного тока с коротким шунтом» или «составной генератор постоянного тока с длинным шунтом». генератор». Этот тип конструкции генератора постоянного тока с самовозбуждением позволяет объединить преимущества каждого типа в одной машине постоянного тока.

Другой способ преодолеть недостатки генератора постоянного тока с самовозбуждением — обеспечить внешнее соединение обмоток возбуждения.Затем это производит другой тип генератора постоянного тока, называемый , генератор постоянного тока с отдельным возбуждением.

Как следует из названия, генератор постоянного тока с отдельным возбуждением питается от независимого внешнего источника постоянного тока для обмотки возбуждения. Это позволяет току возбуждения создавать постоянный поток магнитного поля независимо от условий нагрузки на якорь. Когда к генератору не подключена электрическая нагрузка, ток не течет, и на выходных клеммах появляется только номинальное напряжение генератора.Если к выходу подключена электрическая нагрузка, будет течь ток, и генератор начнет подавать электроэнергию на нагрузку.

Генератор постоянного тока с независимым возбуждением имеет множество применений и может использоваться в генераторах ветряных турбин. Однако генераторы постоянного тока для ветряных турбин имеют тот недостаток, что для возбуждения шунтирующего поля необходим отдельный источник питания постоянного тока. Однако мы можем преодолеть этот недостаток, заменив обмотку возбуждения постоянными магнитами, создав генератор постоянного тока с постоянным магнитом или генератор PMDC .

Генератор постоянного тока с постоянным магнитом

Генератор постоянного тока с постоянным магнитом можно рассматривать как щеточный двигатель постоянного тока с отдельным возбуждением и постоянным магнитным потоком. Фактически, почти все щеточные двигатели постоянного тока с постоянными магнитами (PMDC) можно использовать в качестве генераторов PMDC с постоянными магнитами, но, поскольку они на самом деле не предназначены для использования в качестве генераторов, они не могут быть хорошими генераторами ветряных турбин, потому что при работе как простые генераторы постоянного тока В генераторе вращающееся поле действует как тормоз, замедляющий ротор.Эти машины постоянного тока состоят из статора, имеющего редкоземельные постоянные магниты, такие как неодим или самарий-кобальт, для создания очень сильного магнитного поля статора вместо намотанных катушек и коммутатора, подключенного через щетки к намотанному якорю, как раньше.

Генератор постоянного тока с постоянным магнитом

При использовании в качестве генераторов постоянного тока с постоянными магнитами, двигатели с постоянным магнитным постоянным током, как правило, должны приводиться в движение намного быстрее, чем их номинальная скорость двигателя, чтобы обеспечить напряжение, близкое к их номинальному напряжению двигателя, поэтому машины постоянного тока с высоким напряжением и низкой частотой вращения являются лучшими генераторами постоянного тока.Основное преимущество перед другими типами генераторов постоянного тока заключается в том, что генератор постоянного тока с постоянными магнитами очень быстро реагирует на изменения скорости ветра, потому что их сильное поле статора всегда присутствует и постоянно.

Генераторы постоянного тока с постоянным магнитом обычно легче, чем машины с обмоткой статора для данной номинальной мощности, и имеют лучший КПД, поскольку отсутствуют обмотки возбуждения и потери в обмотках возбуждения. Кроме того, поскольку статор снабжен системой полюсов постоянного магнита, он устойчив к воздействию возможного попадания грязи.Однако, если постоянные магниты не герметизированы полностью, они будут притягивать ферромагнитную пыль и металлическую стружку (также называемую стружкой или опилкой), что может вызвать внутренние повреждения.

Генератор постоянного тока с постоянными магнитами — хороший выбор для небольших ветряных турбин, поскольку они надежны, могут работать на низких скоростях вращения и обеспечивать хорошую эффективность, особенно в условиях слабого ветра, поскольку их точка включения довольно низкая.

Существует множество готовых генераторов постоянного тока с постоянными магнитами с широким диапазоном выходной мощности от нескольких ватт до многих тысяч ватт.Напряжение постоянного тока, генерируемое машиной постоянного тока с постоянным магнитом, определяется следующими тремя факторами:

  • Магнитное поле, создаваемое статором. Это зависит от физических размеров генератора, силы и типа используемых постоянных магнитов.
  • Количество витков или витков провода на якоре. Это значение фиксируется физическим размером генератора и якоря, а также размером жилы. Чем больше витков используется, тем выше выходное напряжение.Точно так же, чем больше диаметр или площадь поперечного сечения провода, тем выше ток.
  • Скорость вращения якоря, которая определяется скоростью лопастей ротора относительно скорости ветра. Для генераторов и двигателей PMDC выходное напряжение пропорционально скорости и обычно линейно.

Наиболее распространенным типом генераторов постоянного тока для ветряных турбин и небольших ветряных турбин, используемых для зарядки аккумуляторов, является генератор постоянного тока с постоянными магнитами, также известный как Dynamo .Динамо-машины — хороший выбор для новичков в ветроэнергетике, поскольку они большие, тяжелые и, как правило, имеют очень хорошие подшипники, поэтому вы можете установить довольно большие лопасти ротора прямо на вал их шкива.

Дизельные динамо-машины для грузовиков или автобусов старого образца — лучший выбор для ветряных турбин, поскольку они разработаны для выработки необходимого напряжения и тока на более низких скоростях с упором на эффективность, а не на максимальную мощность. Кроме того, большинство динамо-машин для автобусов и грузовиков могут генерировать мощность до 500 Вт при напряжении 24 В, что более чем достаточно для зарядки аккумуляторов и питания фонарей для небольшой системы низкого напряжения.

Другие типы двигателей с постоянным током постоянного тока, которые подходят для ветряных генераторов постоянного тока, включают тяговые двигатели, используемые в тележках для гольфа, вилочных подъемниках и электромобилях. Обычно это двигатели на 24, 36 или 48 вольт, с высоким КПД и номинальной мощностью. Одним из основных недостатков генератора постоянного тока с постоянными магнитами является то, что эти машины имеют коммутирующие щетки, которые пропускают полный выходной ток генератора, поэтому машины постоянного тока, используемые в качестве динамо-машин и генераторов, требуют регулярного обслуживания, поскольку угольные щетки, используемые для быстрого отвода генерируемого тока. изнашиваются и производят большое количество электропроводящей угольной пыли внутри машины.Поэтому иногда используются генераторы переменного тока.

Автомобильные генераторы переменного тока — еще один очень популярный выбор в качестве простого генератора постоянного тока для использования в качестве генератора ветровой турбины, особенно среди новичков и энтузиастов, поскольку низковольтный постоянный ток также может генерироваться генераторами переменного тока. Большинство автомобильных генераторов переменного тока содержат выпрямители переменного тока в постоянный, которые подают постоянное напряжение и ток. В генераторе переменного тока магнитное поле вращается, и переменный трехфазный переменный ток, который генерируется неподвижными катушками статора, преобразуется в 12 вольт постоянного тока внутренней схемой выпрямителя.У автомобильных генераторов переменного тока есть явное преимущество, заключающееся в том, что они специально разработаны для зарядки 12- или 24-вольтовых батарей.

Закрытые генераторы PMDC предпочтительны в системах ветряных турбин для защиты их от элементов, но стандартные автомобильные генераторы обычно открыты и охлаждаются окружающим воздухом, вентилируемым через генератор, поэтому требуется некоторая дополнительная форма защиты от атмосферных воздействий. Они также бывают разных размеров и номинальной мощности, предназначенные для небольших автомобилей и больших грузовиков, и, хотя они могут быть дешевыми и легкодоступными, они не очень эффективны по сравнению с более крупными генераторами постоянного тока с постоянными магнитами.

Ключ к простоте и повышению эффективности заключается в создании ветряной турбины с прямым приводом, в которой лопасти турбины установлены непосредственно на валу главного шкива генератора. Как только вы вводите шестерни, ремни, шкивы или любые другие способы увеличения или уменьшения их скорости, вы вносите потери энергии, дополнительные затраты и сложность.

Хотя хороший трехлопастный ротор диаметром от 1,5 до 2 метров может развивать скорость, превышающую 1000 об / мин, это все еще слишком медленно, чтобы подойти для большинства обычных автомобильных генераторов переменного тока, которые вращаются со скоростью от 2000. и 10 000 об / мин, поскольку они прикреплены к двигателю автомобиля, поэтому потребуется коробка передач или система шкивов для увеличения скорости вращения генератора и увеличения выходной мощности генератора.

Кроме того, автомобильные генераторы переменного тока требуют дополнительного внешнего источника питания для подачи небольшого тока смещения (обычно через индикаторную лампу приборной панели) на их катушки возбуждения, чтобы запустить возбуждение и, следовательно, процесс генерации до того, как генератор переменного тока достигнет своей скорости включения . Этот внешний ток возбуждения может подаваться подключенным аккумуляторным блоком, но проблема заключается в том, что батареи будут продолжать подавать ток, возможно разряжая батареи, даже когда лопасти турбины неподвижны в периоды нулевого или слабого ветра.Другая проблема современных автомобильных генераторов заключается в том, что они построены из соображений дешевизны и легкости, поэтому обычно используются только валы ротора небольшого диаметра 5/8 дюйма или 17 мм для установки шкива, который может быть немного маловат, чтобы выдержать вес и напряжения вращающихся лопастей.

Одной из самых сложных частей проектирования небольшой ветряной турбины низкого напряжения для производства электроэнергии является поиск подходящего генератора постоянного тока. Генераторы постоянного тока с постоянным магнитом — это низкоскоростной генератор, который довольно надежен и эффективен при слабом ветре для использования в автономных автономных системах для зарядки аккумуляторов или для питания низковольтного освещения и приборов.Как правило, они имеют линейные кривые мощности с низкими скоростями включения около 10 миль в час. К сожалению, старые генераторы постоянного тока на постоянных магнитах, которые больше, тяжелее и надежнее, найти становится все труднее.

Помимо генераторов постоянного тока с постоянными магнитами, автомобильный генератор переменного тока также является еще одним популярным выбором среди многих мастеров для использования в качестве генераторов постоянного тока низкого напряжения для ветряных турбин. Однако, будучи автомобильным генератором переменного тока, прикрученным сбоку, или двигателем внутреннего сгорания, они требуют высоких оборотов для выработки мощности и не всегда очень эффективны.Автомобильные генераторы также требуют внешнего источника питания для питания электромагнитов, которые создают внутреннее магнитное поле.

Автомобильные генераторы ограничивают собственный ток с помощью встроенной цепи регулятора, которая также предотвращает перезарядку подключенных аккумуляторов генератором. Тем не менее, автомобильный генератор переменного тока никогда не должен подключаться к аккумуляторной батарее задним ходом или запускать генератор на высоких оборотах без подключенной батареи, поскольку выходное напряжение поднимется до высоких уровней (намного больше 12 вольт) и разрушит внутренний выпрямитель.

Низковольтные автономные ветроэнергетические системы постоянного тока отлично подходят для зарядки аккумуляторов и т. Д., Но если мы хотим питать более крупные устройства, подключенные к сети, или иметь систему, привязанную к сети, нам нужно либо использовать инвертор какой-либо формы, чтобы изменить низкий уровень напряжение постоянного тока, генерируемое генератором постоянного тока с постоянными магнитами, в источник переменного тока с более высоким напряжением (120 или 240 вольт) или установка другого типа ветряного генератора.

В следующем уроке по ветровой энергии мы рассмотрим работу и конструкцию другого типа электрической машины, называемой синхронным генератором.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *