Atx переделка в регулируемый бп: Переделка ATX в лабораторный БП

Содержание

Переделка ATX в лабораторный БП

Собирая схемы, всегда хотелось иметь под рукой надежный БП под все случаи жизни. Перепаяв десяток схем, спалив жменю транзисторов, выкладываю свою схему популярнейшей переделки из ATXых блоков питания в лабораторный регулируемый источник.

1) Сначала, что нужно оставить с типовой схемы стандартного БП:

Т.е. оставляем высоковольтную часть и дежурку. Почти всю низковольтную часть выкидываем. Оставляем сдвоенный диод на выходных +12V, ставим свой дроссель, электролит. Если получиться сделать два каскада фильтров — замечательно. Дальше, чтобы расширить диапазон напряжения не перематывая основной трансформатор c +5V обмотки делаем -5V, т,е. впаиваем сдвоенный диод анодами вместе. Также добавляем каскады фильтров (при пайке не путаем полярность относительно общего для электролитов).

2) Травим и собираем наши мозги:

Сама схема не новая,  но некоторые изменения в обвязке операционника в сторону упрощения сделал.

На 4 и 13 ножках TL494 есть дополнительные пятаки для подключения тумблера «Вкл/выкл ШИМ».

3) Подключение доработки к основной плате:

J29 — подключаем к дежурному +5V;

J28 — подключаем к дежурному +12V; 

J15 — подключаем к выходному +V;  

J25 — подключаем к датчику тока;  

J16 — подключаем к выходному -V;  

J26, J27 — подключаем к первичке трансформатора управления силовыми транзисторами (центральная точка должна была остаться подключенной к дежурному питанию через диод с резистором).

Подстроечный RV5 при первом включении должен быть выкручен на 1/7 к общему (между общим и регулируемой ногой 5кОм, между J15 и регулируемой ногой 27кОм).

Подстроечный RV3 при первом включении должен быть выкручен на 1/10 к общему (между общим и регулируемой ногой 10кОм, между ISENSE и регулируемой ногой 90кОм).

На выходе операциоников должно быть напряжение 0 — 5V.

Теперь самое сложное для понимания. По новой схеме основной платы у нас получилось на выходе плюс 12V и минус 5V. Поскольку датчик тока у нас стоит в отрицательном напряжении, то операционник с ним работать не захочет. Исправляется просто, для этого нужно чтобы «общий» маленькой платы был подключен к минус 5V основной платы новой схемы. Также нужно «общий» дежурного напряжения основной платы перерезать от «общего» силовой части старой схемы и подключить к  минус 5V по новой схеме. В некоторых БП фирмы Chieftec проще, видел уже развязанные «общие» дежурного питания и силы.

4) Прошиваем контроллеры:

Фьюзы не менял, остаются заводские. Для контроллера дисплея тока, при прошивке пищик отпаивать обязательно, с ним не шьется.

5) Собираем в кучу:

Каждый делает по разному. Могу лишь показать пример моего одного из 4-х последних:

Не забываем ставить резисторы параллельно выходным электролитам для их разрядки.

Пьезоизлучатель пикает примерно раз в две минуты при нагрузке 1А — 1 раз, 2А — 2 раза и т.д., свыше 9,99А пищит постоянно.

Итого, получился БП регулируемый по напряжению 0 — 32.3V, по току 0 — 9.99А.

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

U1
ШИМ контроллерTL4941
U2, U3
МК AVR 8-битATtiny261A2
U4
Операционный усилительLM3581
Q1, Q2
Биполярный транзистор2SC9452
D1-D4
Выпрямительный диод1N41484
C1
Конденсатор1.5 нФ1
C2
Электролитический конденсатор20 мкФ1
C3-C6
Конденсатор10 нФ4
C9
Электролитический конденсатор50 мкФ1
C10
Электролитический конденсатор1 мкФ1
R1
Резистор12 кОм1
R2
Резистор10 кОм1
R3
Резистор47 кОм1
R4, R5
Резистор4.7 кОм2
R6, R7
Резистор3.3 кОм2
R13, R14
Резистор5 кОм2
RV1, RV2
Подстроечный резистор10 кОм1
RV3
Подстроечный резистор100 кОм1
RV5
Подстроечный резистор33 кОм1

LCD-дисплей7-ми сегментный 3-х символьный2
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

Переделка atx в лабораторный бп подробно

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+3,3 В — оранжевый

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить «стабильные» +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

9zip.ru Радиотехника, электроника и схемы своими руками Практика переделки компьютерных блоков питания в регулируемые лабораторные

В комментариях к популярной статье о переделке компьютерных блоков питания часто задают вопросы и сетуют на неудачи. Чтобы показать, что переделка действительно возможна и она вовсе несложна, мы подготовили ещё одну статью, с иллюстрациями и пояснениями.

Напомним, что переделывать можно любые блоки, как AT, так и ATX. Первые отличаются просто отсутствием дежурки. Как следствие, TL494 в них питается непосредственно с выхода силового трансформатора, и, опять же, как следствие, — при регулировке на малых нагрузках ей просто не будет хватать питания, т. к. скважность импульсов на первичке трансформатора будет слишком мала. Введение отдельного источника питания для микросхемы решает проблему, но требует дополнительное место в корпусе.

Блоки питания ATX здесь выгодно отличаются тем, что ничего не нужно добавлять, нужно лишь убрать лишнее и добавить, грубо говоря, два переменных резистора.

На переделке — компьютерный блок питания ATX MAV-300W-P4. Задача — переделать в лабораторный 0-24В, по току — тут уж как получится. Говорят, что удаётся получать 10А. Что ж, проверим.

Нажмите на схему для увеличения
Схема блока питания легко гуглится, но можно обойтись и без неё, ведь мы знаем, что от TL494 нам понадобятся входы обоих компараторов, а это — выводы 1, 2, 15, 16, и их общий выход 3, который принято использовать для коррекции. Освобождаем также вывод 4, так как обычно он задействован под различные защиты. Однако, висящие на нём конденсатор C22 и резистор R46 оставляем для плавного запуска. Отпаиваем только диод D17, отключая следилку за напряжениями от TL-ки.

Добавляем резисторы, регуляторы, шунт. В качестве последнего использованы два SMD резистора на 0,025 Ом параллельно, которые включены в разрыв минусовой дорожки от трансформатора.

Блок питания включаем в сеть через лампу накаливания мощностью 200Вт, которая предназначена для защиты от пробоя силовых транзисторов в случае внештатной ситуации. На холостом ходу напряжение прекрасно регулируется практически от 0 до 24 вольт. А что же будет под нагрузкой? Подключаем несколько мощных галогенок и видим, что напряжение регулируется уже до 20 вольт. Это ожидаемо, ведь мы используем 12-вольтовые обмотки и выпрямитель со средней точкой. На мощной нагрузке ШИМ уже на пределе и получить больше уже невозможно.

Что же делать? Можно просто использовать блок питания для питания не очень мощных нагрузок. Но что же делать, если очень хочется получить заветные 10 ампер, тем более, что на этикетке блока питания они как раз заявлены для линии 12 вольт? Всё очень просто: меняем выпрямитель на классический мостик из четырёх диодов, тем самым увеличивая амплитуду напряжения на его выходе. Для этого понадобится установить ещё два диода. На схеме видно, что такие диоды как раз были установлены, это D24 и D25, по линии -12 вольт. К сожалению, их расположение на плате для нашего случая неудачное, поэтому придётся использовать диоды в «транзисторных» корпусах и либо устанавливать на них отдельные радиаторы, либо крепить к общему радиатору и припаивать проводками. Требования к диодам те же: быстрые, мощные, на требуемое напряжение.

С переделанным выпрямителем напряжение даже с мощной нагрузкой регулируется от 0 до 24 вольт, регулировка тока также работает.

Осталось решить ещё одну проблему — питание вентилятора. Оставлять блок питания без активного охлаждения нельзя, потому что силовые транзисторы и выпрямительные диоды нагреваются соответственно нагрузке. Штатно вентилятор питался от линии +12 вольт, которую мы превратили в регулируемую с диапазоном напряжений несколько более широким, чем нужно вентилятору. Поэтому самое простое решение — питать его от дежурки. Для этого заменяем конденсатор C13 на более ёмкий, увеличив его ёмкость в 10 раз. Напряжение на катоде D10 — 16 вольт, его и берём для вентилятора, только через резистор, сопротивление которого нужно подобрать так, чтобы на вентиляторе было 12 вольт. Бонусом с этого БП можно вывести хорошую пятивольтовую линию питания +5VSB.

Требования к дросселю те же: с ДГС сматываем все обмотки и наматываем новую: от 20 витков, 10 проводов диаметром 0,5мм впараллель. Конечно, такая толстая жила может не влезть в кольцо, поэтому количество параллельных проводов можно уменьшать соответственно вашей нагрузке. Для максимального тока в 10 ампер индуктивность дросселя должна быть в районе 20uH.

В качестве шунта можно использовать шунт, встроенный в амперметр, и наоборот — шунт можно использовать для подключения амперметра без встроенного шунта. Сопротивление шунта — в районе 0,01 Ом. Уменьшая сопротивление резистора R, можно увеличить диапазон регулировки напряжения в большую сторону.

Переделка компьютерного блока питания на 14 вольт

Основа современного бизнеса – получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, – просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно – различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат – импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все – «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак – несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель – не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает – можно делать пробный пуск и измерить все напряжения.

+3,3 В – оранжевый

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть – блок включится и вентилятор – индикатор включения – начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины – 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод – вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром – вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке – типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения – достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор – для подбора срабатываний по току. Но получилось неважно – нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Мне нужен был легкий блок питания, для разных дел (экспедиций, питания разных КВ и УКВ трансиверов или для того чтобы переезжая на другую квартиру не таскать с собой трансформаторный БП). Прочитав доступную информацию в сети, о переделке компьютерных БП – понял, что разбираться придется самому. Все что нашел, было описано както сумбурно и не совсем понятно (для меня). Здесь я расскажу, по порядку, как переделывал несколько разных блоков. Различия будут описаны отдельно. Итак, я нашел несколько БП от старых PC386 мощностью 200W (во всяком случае, так было на крышке написано). Обычно на корпусах таких БП пишут примерно следующее: +5V/20A , -5V/500mA , +12V/8A , -12V/500mA

Токи указанные по шинам +5 и +12В – импульсные. Постоянно нагружать такими токами БП нельзя, перегреются и треснут высоковольтные транзисторы. Отнимем от максимального импульсного тока 25% и получим ток который БП может держать постоянно, в данном случае это 10А и до 14-16А кратковременно (не более 20сек). Вообще-то тут нужно уточнить, что 200W БП бывают разные, их тех что мне попадались не все могли держать 20А даже кратковременно! Многие тянули только 15А, а некоторые до 10А. Имейте это в виду!

Хочу заметить что конкретная модель БП роли не играет, так как все они сделаны практически по одной схеме с небольшими вариациями. Наиболее критичным моментом, является наличие микросхемы DBL494 или ее аналогов. Мне попадались БП с одной микросхемой 494 и с двумя микросхемами 7500 и 339. Всё остальное, не имеет большого значения. Если у вас есть возможность выбрать БП из нескольких, в первую очередь, обратите внимание на размер импульсного трансформатора (чем больше, тем лучше) и наличие сетевого фильтра. Хорошо, когда сетевой фильтр уже распаян, иначе его придётся самому распаять, чтобы помехи снизить. Это несложно, намотайте 10 витков на ферритовом кольце и поставьте два конденсатора, места для этих деталей уже предусмотрены на плате.

Для начала, сделаем несколько простых вещей, после которых вы получите хорошо работающий блок питания с выходным напряжением 13.8В, постоянным током до 4 – 8А и кратковременным до 12А. Вы убедитесь что БП работает и определитесь, нужно ли продолжать модификации.

1. Разбираем блок питания и вытаскиваем плату из корпуса и тщательно чистим её, щеткой и пылесосом. Пыли быть не должно. После этого, выпаиваем все пучки проводов идущие к шинам +12, -12, +5 и -5В.

2. Вам нужно найти (на плате) микросхему DBL494 (в других платах стоит 7500, это аналог), переключить приоритет защиты c шины +5В на +12В и установить нужное нам напряжение (13 – 14В).
От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше, но это не принципиально), один идёт на корпус, другой к шине +5В. Он нам и нужен, аккуратно отпаиваем одну из его ножек (разрываем соединение).

3. Теперь, между шиной +12В и первой ножной микросхемы DBL494 припаиваем резистор 18 – 33ком. Можно поставить подстроечный, установить напряжение +14В и потом заменить его постоянным. Я рекомендую установить не 13.8В, а именно 14.0В, потому что большинство фирменной КВ-УКВ аппаратуры работает лучше при этом напряжении.

НАСТРОЙКА И РЕГУЛИРОВКА

1. Пора включить наш БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12В подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12В., устанавливаем напряжение от 13.9 до +14.0В.

2. Теперь проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2В и не больше 3В. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12В. Обратите особое внимание на этот пункт, это ключевой момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.

3. Закоротите тонким проводом шину +12В на корпус, напряжение должно пропасть, чтобы оно восстановилось – выключите БП на пару минут (нужно чтобы ёмкости разрядились) и включите снова. Напряжение появилось? Хорошо! Как видим, защита работает. Что, не сработала?! Тогда выкидываем этот БП, нам он не подходит и берем другой. хи.

Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения радиостанции. Блоком питания можно пользоваться! Подключите трансивер, но давать нагрузку более 12А пока нельзя! Автомобильная УКВ станция, будет работать на полной мощности (50Вт), а в КВ трансивере придётся установить 40-60% мощности. Что будет если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы. В этом случае напряжение просто пропадет и последствий для аппаратуры не будет. После их замены, БП снова работоспособен!

ПРОДОЛЖАЕМ МОДИФИЦИРОВАТЬ ДАЛЬШЕ . . . .

1. Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса. Под два винта вентилятора, подкладываем шайбы чтобы его немного развернуть, а то дует только на высоковольтные транзисторы, это неправильно, нужно чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо.

Перед этим, вентилятор желательно смазать. Если он сильно шумит поставьте последовательно с ним резистор 60 – 150ом 2Вт. или сделайте регулятор вращения в зависимости от нагрева радиаторов, но об этом чуть ниже.

2. Выведите две клеммы из БП для подключения трансивера. От шины 12В до клеммы проведите 5 проводов из того пучка который вы отпаяли вначале. Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором. Минусовой провод, также подведите к клемме пятью проводами.

В некоторых БП, параллельно клеммам к которым подключается трансивер, поставьте резистор сопротивлением 300 – 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.

3. Умощняем шину +12В и избавляемся от лишнего хлама. Вместо диодной сборки или двух диодов (которые часто ставят вместо неё), ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5В, выпаиваем её и выбрасываем.

Под нагрузкой, наиболее сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Теперь наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Как я говорил ранее, он может доходить до 16А (для БП мощностью 200Вт).

4. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12В, стоящий там ранее дроссель (он более высокий и намотан тонким проводом) выпаяйте и выбросите. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно чтобы он был для лучшей фильтрации возможных помех.

5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех. Шина +12В на нем намотана более тонким проводом, а шина +5В самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12В и +5В (или включите все обмотки параллельно). Теперь шина +12В проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше.

6. В БП установлены два радиатора, один для мощных высоковольтных транзисторов, другой, для диодных сборок на +5 и +12В. Мне попадались несколько разновидностей радиаторов. Если, в вашем БП, размеры обоих радиаторов 55x53x2мм и в верхней части у них есть ребра (как на фотографии) – вы можете рассчитывать на 15А. Когда радиаторы имеют меньший размер – не рекомендуется нагружать БП током более 10А. Когда радиаторы более толстые и имеют в верхней части дополнительную площадку – вам повезло, это наилучший вариант, можно получить 20А в течении минуты. Если радиаторы маленькие, для улучшения теплоотдачи, можно закрепить на них небольшую пластину из дюраля или половинку от радиатора старого процессора. Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору, иногда они болтаются.

7. Выпаиваем электролитические конденсаторы на шине +12В, на их место ставим 4700×25В. Конденсаторы на шине +5В желательно выпаять, просто для того, чтобы места свободного больше стало и воздух от вентилятора лучше детали обдувал.

8. На плате вы видите два высоковольтных электролита, обычно это 220×200В. Замените их на два 680×350В, в крайнем случае, соедините параллельно два по 220+220=440мКф. Это важно и дело тут не только в фильтрации, импульсные помехи будут ослаблены и возрастёт устойчивость к максимальным нагрузкам. Результат можно посмотреть осциллографом. Во общем, надо делать обязательно!

9. Желательно чтобы вентилятор менял скорость в зависимости от нагрева БП и не крутился когда нет нагрузки. Это продлит жизнь вентилятору и уменьшит шума. Предлагаю две простые и надежные схемы. Если у вас есть терморезистор, смотрите на схему посередине, подстроечным резистором устанавливаем температуру срабатывания терморезистора примерно +40С. Транзистор, нужно ставить именно KT503 с максимальным усилением по току (это важно), другие типы транзисторов работают хуже. Терморезистор любой типа NTC, это означает, что при нагреве его сопротивление должно уменьшаться. Можно использовать терморезистор с другим номиналом. Подстроечный резистор должен быть многооборотным, так легче и точнее настроить температуру срабатывания вентилятора. Плату со схемой прикручиваем к свободному ушку вентилятора. Терморезистор крепим к дросселю на ферритовом кольце, он нагревается быстрее и сильнее остальных деталей. Можно приклеить терморезистор к диодной сборке на 12В. Важно, чтобы ни один из выводов терморезистора не коротил на радиатор. В некоторых БП, стоят вентиляторы с большим током потребления, в этом случае после КТ503 нужно поставить КТ815.

Если терморезистора у вас нет, сделайте вторую схему, смотрите справа, в ней в качестве термоэлемента используются два диода Д9. Прозрачными колбами приклейте их к радиатору на котором установлена диодная сборка. В зависимости от применяемых транзисторов, иногда нужно подобрать резистор 75 ком. Когда БП работает без нагрузки, вентилятор не должен крутиться. Все просто и надежно!

От компьютерного блока питания мощностью 200W, реально получить 10 – 12А (если в БП будут стоять большие трансформаторы и радиаторы) при постоянной нагрузке и 16 – 18А кратковременно при выходном напряжении 14.0В. Это значит, что вы можете спокойно работать в режимах SSB и CW на полной мощности (100Вт) трансивера. В режимах SSTV, RTTY, MT63, MFSK и PSK, придётся уменьшить мощность передатчика до 30-70Вт., в зависимости от продолжительности работы на передачу.

Вес переделанного БП, примерно 550гр. Его удобно брать с собой в радиоэкспедиции и различные выезды.

При написании этой статьи и во время экспериментов, было испорчено три БП (как известно, опыт приходит не сразу) и удачно переделано пять БП.

Большой плюс компьютерного БП, в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250В. Некоторые экземпляры работают и при большем разбросе напряжений.

Смотрите фотографии удачно переделанных импульсных блоков питания:

Игорь Лаврушов
г.Кисловодск

Началось все с того, что подарили мне блок питания АТХ от компьютера. Так он пролежал пару лет в заначке, пока не возникла необходимость соорудить компактное зарядное устройство для аккумуляторов.
Блок выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. Не буду вдаваться в подробности работы блока питания,
алгоритм переделки следующий:
1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.
3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.

Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.
6. Далее собираем схему.

Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будите ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.
7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт, 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.
8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.
9. Припаиваем клеммы и идем тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.

Вот вкратце описал простую переделку блока питания в зарядное устройство…Задавайте вопросы, пишите комментарии…
Удачи всем на дороге!

Comments 53

Антон привет! Осталась схема самого блока питания?

Привет! Схема классическая как для ТL494 от старого блока питания…

У тебя что то напутано с защитой

Какой у тебя стоит резистор R12?

у тебя лампочка по сети забирает ток. Посмотри чтоб минус на аккум шол только через шунт! Потом отсоедини лампочку по сети и пробуй.

Убрал лампочку, блок свистел но нагрузку в 1А выдержал, подключил лампу 55W, сила тока возросла до 4,7А, и блок потух, сгорели ключи по входу STD13007

Привет, собираю ЗУ как у тебя, ну что то пошло не так, есть предположения?

не умеючи можно сжечь что угодно…

Блин раза 2 использовал это говно.Один раз магнитолу сжег клиентскую.2 раз БП полыхнул так что не видел минуты 2.Не заморачивайтесь.

собрал . не работает.моргнет и все.

Уходит в защиту…Проверь правильность сборки, покрути на отключеном блоке резистор тока, потом повключай…

тоже самое. моргнет и в защиту

проверь чтоб не было ничего лишнего на 1,2, 15,16 ногах микросхемы

вот нужно решить как обойти

проверь чтоб не было ничего лишнего на 1,2, 15,16 ногах микросхемы

как обойти защиту на микросхеме U2 ?

Добрый день. А у меня блок от компа на микрухе WT 7514L (450вт)можно ли сделать как вы сделали?

чтоб одновременно два провода размыкать а не один…
если фазу не разомкнуть то конденсаторы могут быть под небольшим напряжением…

А для чего на включатель идет столько проводов?

Прикольный проект, земляк ! Ссылочкой на статью не поделишься ?

минусом на 4 лапу, плюсом на 13,14. конденсатор 47 мкф, для мягкого старта блока питания, иначе при старте бывает выбивает транзисторы входные. из опыта построения множества лабораторников !

Спасибо! Стоял конденсатор в родной начинке…

в родной начинке 1…10 мкф. нужен 47…100 мкф, для более мягкого старта. ИМХО из опыта

Делаю аналогичную переделку, намучился с регулировкой тока. То регулируется ступенчато, то свистят транзисторы. Подбирал обратную связь и вылетел один высоковольтный транзистор. Но конденсатор с высоким номиналом как у вас 0,068 не пробовал. Попробую как транзистор заменю. Еще подозрение что у меня сильно малое сопротивление шунта (где-то 15см 0.7мм2)

Есть мнение (моё), что за ступенчатость лежит вина на том резисторе, которым пытаетесь регулировать. Может, нужно его зашунтировать или вообще заменить. Я в своем обратную связь тоже долго подбирал, при чем, с осциллографом. Пришел к выводу, что по току одна и та же RC цепочка может адекватно работать в конкретном диапазоне токов. На малых токах одни номиналы, на больших — другие. В итоге, сделал переключение режимов. Соответственно, одновременно переключаются резисторы, ограничивающие максимальный ток на выходе блока, резисторы и конденсаторы цепи ОС по току и шунты на амперметре (подобрал для одной шкалы). Переключал в выключенном состоянии. Не скажу, что на малых токах нет нареканий, посвистывает порою стремно.
Еще, учитывая, что токи под 30 ампер и выше мне не потребуются, ограничился 10-ю. Соответственно, при 25 вольтах, полученных от блока, 10 ампер — было бы за глаза. А, для блока с заявленной мощностью в 400 ватт работа почти в холостую является не самой экономичной. Потому в базовых цепях (Б-Э) силовых ключей заменил резисторы с 2,7-3,3 кОм на 200-300 Ом (подобрал по порогу открытия транзисторов и взял чуток с запасом). Резисторы по 200 кОм из верхних плеч (Б-К) убрал вообще. Тем самым заставил транзисторы находиться в открытом состоянии гораздо меньше времени, так как при исчезновении управляющего импульса напряжение на базе падает быстрее. Фронты импульсов стали практически идеальными, не затянутыми. В результате, нагрева транзисторов практически нет. При 14 вольтах и 6 амперах (в процессе зарядки АКБ) радиатор силовых транзисторов был еле-теплый довольно продолжительное время.
Мощность по итогу, конечно, не 400 ватт. На 25-ти вольтах удавалось выжать только около 6,5 Ампер == порядка 160 ватт. С учетом не идеального КПД, будем считать, что из сети потребляем 200 ватт. Но, главную для себя цель достиг –, на мои нужды хватает и тока и напряжения, а перегрева не боюсь. Вентилятор стоит с регулятором на основе пленочного терморезистора (выдрал из акб ноута) и почти всегда вращается на самых малых оборотах.
Считаю, что шунт по мере возможности лучше взять готовый из белых керамических сопротивлений. Соединил параллельно два пятиватных по 0,1 Ом, вышло, что и падение напряжения не большое и потому нагрева их не происходит, и для работы схемы их сопротивления достаточно. Да и стрелочный амперметр откалибровать проще, зная сопротивление шунта.

Делаю аналогичную переделку, намучился с регулировкой тока. То регулируется ступенчато, то свистят транзисторы. Подбирал обратную связь и вылетел один высоковольтный транзистор. Но конденсатор с высоким номиналом как у вас 0,068 не пробовал. Попробую как транзистор заменю. Еще подозрение что у меня сильно малое сопротивление шунта (где-то 15см 0.7мм2)

Поиграйте с шунтом, обязательно чтоб 16 вывод микросхемы был на минусе аккумулятора, а не блока питания! Еще можно поиграться сопротивлением переменного резистора регулировки тока, у меня стоит 2 кОм…И обязательно при экспериментах включайте блок питания последовательно через лампочку по сети 220В.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ КОМПЬЮТЕРНОГО ATX

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ КОМПЬЮТЕРНОГО ATX

     С каждым годом, становится всё труднее достать хороший трансформатор для блока питания. Чтоб и напряжения были какие требуются, и ток. Вот недавно нужно было собрать адаптер для одного девайса, так оказывается цены на обычные трансформаторы, в радиомагазинах, находятся в пределах 5-15 уе! Поэтому, когда потребовалось сделать хороший лабораторный блок питания, с регулировками напряжения и тока защиты, выбор пал на компьютерный БП ATX в качестве основы конструкции. Тем более, что его цена сейчас не намного больше цены обычного трансформатора.

     Для наших целей подойдёт абсолютно любой компьютерный БП. Хоть на 250 ватт, хоть на 500. Того тока, что он обеспечит, хватит для радиолюбительского БП с головой.

     Переделка компьютерного БП ATX минимальна, и доступна для повторения даже начинающим радиолюбителям. Главное только помнить, что импульсный компьютерный БП ATX имеет на плате много элементов, которые находятся под напряжением сети 220 В, поэтому будьте предельно аккуратны при испытаниях и настройке! Изменений коснулась в основном выходная часть БП ATX.

     Для удобства эксплуатации, этот лабораторный блок питания можно снабдить цифровой индикацией тока и напряжения. Выполнить это можно или на микроконтроллере, или на специализированной микросхеме.

     Все основные и дополнительные детали блока питания монтируются внутри корпуса БП ATX. Места там хватает и для них, и для цифрового вольтамперметра, и для всех необходимых гнёзд и регуляторов.

     Последнее преимущество так-же очень актуально, ведь корпуса часто являются большой проблемой. Лично у меня в ящике стола лежит немало девайсов, которые так и не обзавелись собственной коробкой. 

     Корпус получившегося блока питания можно обклеить декоративной чёрной самоклеющейся плёнкой или просто покрасить. Переднюю панель со всеми надписями и обозначениями делаем в фотошопе, печатаем на фотобумаге и наклеиваем на корпус.

     Долгие испытания лабораторного блока питания показали его высокую надёжность, стабильность и отличные технические характеристики. Рекомендую всем повторить эту конструкцию, тем более, что переделка довольно простота и в итоге получится красивый компактный БП. Другие качественные фото блока питания можно скачать в разделе книги

     Если возникли вопросы по переделке — задавайте их на ФОРУМЕ

Самая простая переделка блока питания компъютера ATX на шим-контроллере 2003 в регулируемый. | Радио Канал

Добрый день дорогие мои читатели.

Сегодня я Вам расскажу, как переделать блок питания ATX на шим-контроллере 2003 в регулируемый блок питания. В отличии от переделки блоков питания ATX на шим-контроллере TL494 и его аналогов, тема переделки шим-контроллере 2003 радиолюбителями мало изучена и освещена. Микросхема 2003 представляет собой универсальный шим, спроектированный специально для компьютерных источников питания ATX. В ней содержится сам генератор ШИМ, несколько компараторов и блоков защиты. Защита блока питания основана на контроле выходных напряжений 3,3В; 5В и 12В. Если на входах защиты напряжения отличаются от указанных, блок питания уходит в защиту. Подав контрольные напряжения, например с дежурки через стабилизатор и резистивный делитель, защиту можно обмануть.

Я переделывал блок питания GoldenPower300-B.

Чем хороши БП на шим-контроллере 2003, то тем что у них, в отличии от БП на шим-контроллере TL494, практически у всех одинаковая схема и расположение деталей на плате, и еще обозначения совпадают. Мне попадалось несколько таких блоков, и у них все было одинаково.

Переделку мы начнем с того, что вынем плату с БП и демонтируем с нее все лишнее. Можете смело ориентироваться по приведенному рисунку, все платы этих блоков одинаковые. Для наглядности плату привожу с разных сторон.

Дорабатываем дежурку. На диоде D9 у нас приблизительно 17В, к нему подключаем стабилизатор. От 12В будет также запитываться вентилятор, и питание ампервольтметра. С 5В дежурки через резистивный делитель получим 3,3В.

Следующий этап дорабатываем силовую часть. Нагрузочные резисторы я применил МЛТ 2вт 2 шт последовательно.

И завершающий этап. Переносим наш резистистивный делитель ближе к ножкам микросхемы шим-контроллера 2003 и немного меняем его обвязку, согласно окончательной схемы. При приведенных на схеме номиналах регулировочного резистора 20К и его обвязки напряжение на выходе плавно регулируется от 0 до 22 Вольт.

Как видите переделка очень проста, я таким способом переделал несколько таких блоков. При проверки работоспособности БП, обязательно включайте его последовательно с лампой накаливания 60 Вт. Окончательно смонтированный блок питании выглядит так.

Сразу Вас предупреждаю, в этом блоке нет регулировки и защиты по току, а если Вы его будете использовать для зарядки аккумуляторов (автор в основном использует его для этих целей), соблюдайте полярность.

В следующей статье я расскажу, как я доработал такой блок сделав сделав в нем регулировку и защиту по току, а также защиту от переполюсовки.

Если Вам понравилась моя статья, жду от Вас поддержки лайками, комментариями, подпиской на мой канал и репостом статьи в социальных сетях

ЗАРЯДНОЕ УСТРОЙСТВО — ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX

   Превращаем ненужный БП от компьютера в мощное зарядное устройство — лабораторный блок питания. Пошаговая фотоинструкция. Вначале ищем компьютерный блок питания формата ATX. 

   Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Также нужно выпаять диод, (отмечено 1 на плате) соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП. И обратите внимание на электролит отмененным 2-ой, его оставить, он бывает от 1 до 4.7мкф. Я его меняю на 10мкфХ10в. 

   Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока. 

   Пунктиром очерчены детали, которые уже есть в БП. 

   Выпрямительные диоды нужно соединить с 12-ти вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 – тогда можно максимальный выходной ток увеличить до 20А.

   Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V. 

   Приводим схему выходной части в соответствие со схемой. Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. 2*0.05ом). Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5V SB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT.

   Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно.  

   Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП ATX без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения. 

   Упаковываем все в корпус, выводим необходимые элементы, и радуемся отличному лабораторному блоку питания, он же по совместительству импульсное зарядное устройство для автомобильных аккумуляторов. Автор статьи и фото: ear

Переделка atx в лабораторный бп

Блок питания ATX на SG6105 – переделка в лабораторный

Блоки на основе ШИМ SG6105 и им подобные, очень плохо поддаются переделкам.

Вездесущие защиты, встроенные в эту микросхему, напрочь отбивают охоту радиолюбителей иметь дело с такими блоками.

Сегодня у нас простое решение такой проблемы! Блок питания ATX COLORSit 330U-FNM на ШИМ SG6105 – переделка в лабораторный с помощью переходника на TL494.

Блок питания ATX на ШИМ SG6105 – переделка в лабораторный

Недавно мы публиковали материалы по переходнику с SG6105 на TL494, с его помощью очень легко можно было заменить одну микросхему другой и избавиться от назойливых защит. Этот отдельный модуль устанавливался на штатное место SG6105 и позволял проводить минимальную корректировку основной платы блока.

При переделке блока на ШИМ SG6105 в лабораторный, изменений в основной плате будет немного больше, но обо всем по порядку.

Изменение в основной плате блока

Ниже приведена схема COLORSit 330U-FNM на ШИМ SG6105, плата этого блока точно совпадает со схемой.

Первым делом необходимо удалить часть компонентов, которые нам будут уже не нужны. В основном это касается силовых шин +5; +3,3; -12 В, элементов обвязки защит и служебных выводов SG6105.

Дополнительные изменения в плате касаются новых элементов, выделенных красными рамками с нумерацией изменений.

  • Устанавливаем новые номиналы для резисторов обратной связи с шины +12 В. Это для R2848 кОм, R2312 кОм.
  • Переключаем питание ШИМ на другую обмотку дежурки с напряжением 15-17 В, т.к. для питания TL494 нужно минимум 7 В. (т.е. R22 подключаем к диоду D12)
  • Питание вентилятора также нужно брать с этой же обмотки дежурки, используя дополнительный стабилизатор LM7812.
  • Устанавливаем токоизмерительный шунт, в качестве которого используем три резистора номиналом 0,1 Ом, мощностью 10 Вт. Минусовая клемма выхода блока будет теперь уже после шунта.
  • Следует поставить новый выходной электролитический конденсатор с рабочим напряжением минимум 25 В, номиналом в 1000-2200 мкФ.
  • Нагрузочный резистор R27 лучше заменить резистором с чуть большим сопротивлением в 1 кОм.
  • Если в блоке используется маломощная диодная сборка по шине +12 В, параллельно ей желательно установить еще одну или заменить на более мощную.
  • Переходник с SG6105 на TL494 для регулировки тока

    Схема переходника с SG6105 на TL494 для регулировки тока включает в себя: TL494 с необходимой обвязкой и две TL431.

    По сути, можно обойтись лишь одной TL431, которая используется для дежурки.

    Поскольку схемы блоков на SG6105 бывают разные нельзя заранее сказать, какая из TL431 используется дежуркой, а какая для шины 3,3 В, для универсальности решено было оставить обе.

    16-я ножка TL494 подключается на минусовый выход после шунтов (обозначенная синей рамкой), место подключения вывода к 16 ножке тоже обозначено и указанно на схеме.

    R4 используется для регулировки напряжения, а R10 для регулировки тока. Расчет обвязки выполнен для выходного напряжения 0-17 В; 0-15 А.

    Печатку для переходника с регулировкой тока можно будет скачать в конце статьи.

    Если токи в 15А не нужны, достаточно убрать один из токоизмерительных резисторов 0,1 Ом (использовать два вместо трех), при двух – максимальный рабочий ток будет около 10 А.

    Вот таким получился наш переходник.

    Сборка блока

    Для установки переходника на место SG6105 нужно использовать панельку. После финишной сборки переходник желательной прочно зафиксировать в разъеме используя термо силикон или что-то другое.

    Из-за больших размеров трех резисторов по 10 Вт их очень удобно крепить на радиатор, на радиатор также следует установить LM7812 т.к. при работе вентилятора она будет сильно греться.

    Вот так выглядит блок после удаления лишних компонентов и готовый к установке переходника.

    Подключаем наш переходник в панельку микросхемы SG6105.

    Такой переходник должен подходить практически ко всем блокам питания на SG6105, но необходимо быть внимательным при удалении ненужных компонентов и внимательно вникнуть в отличия схем и нумерации деталей.

    Тесты

    Поскольку вольтамперметр с диапазоном на 20А еще не приехал, используем мультиметр в качестве амперметра и простенький цифровой вольтметр, который питается от линии, на которой меряет напряжение (из-за этого его показания и пропадают при напряжении ниже 3 В).

    Немного слов о стабильности напряжения. Пульсации 0,1 В с периодом 10 миллисекунд на максимальном токе 15 А и выходном напряжении 17 В.

    Печатку платы переходника в формате lay можно скачать по ссылке ниже:

    Лабораторный БП из компьютерного ATX

    В наше время наверное только ленивый, не переделывал компьютерный AT или ATX блок питания в лабораторный или зарядное устройство для автомобильной АКБ. И я решил не оставаться в стороне. Для переделки взял старый ATX 350 Вт блок питания с ШИМ контроллером TL494 или его аналогом KA7500B, блоки с таким контроллером легче всего переделывать.

    Первым делом необходимо убрать лишние компоненты с платы, дроссель групповой стабилизации, конденсаторы, некоторые резисторы, не нужные перемычки, цепь power ON с ней же и компаратор LM393. Стоит заметить что все схемы на TL494 похожи, иметь могут только не большие различия, поэтому для понимания как переделывать БП можно взять типовую схему.

    Вообщем вот типовая схема ATX блока питания на TL494.

     Вот схема с удаленными лишними элементами.

    На первой схеме я выделил участок, этот участок отвечает за защиту от перегрузок по мощности у себя я его счел нужным удалить о чем немного сожалею. Советую этот участок не удалять.

    В выходной цепи вместо диодной сборки +12 В необходимо поставить диодную сборку Шоттки с максимальным импульсным обратным напряжением 100 В и током 15 А примерно такую: VS-16CTQ100PBF.

    Электролитический конденсатор после дросселя должен иметь емкость 1000-2200 мкФ и напряжение минимум 25 В. Нагрузочный резистор должен иметь сопротивление 100 Ом и мощность около 2 Вт. Дроссель

    После того как все лишние удалено, можно приступить к сборке схемы управления.

    Схему управления взял из этой статьи: Лабораторный БП из AT. В этой статье очень подробно описывается переделка.

    На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

    На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

    Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2).

    Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10).

    Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

    Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

    На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

    Моя схема

    В своей схеме для измерения тока я использую датчик тока ACS712 на эффекте холла, валялся длительное время без дела вот и решил внедрить. Надо отметить, что измеряет  он по точнее чем кусок проволоки, ибо имеет маленькую зависимость от температуры так как измерительная часть имеет очень маленькое сопротивление. Кусок же проволоки меняет свое сопротивление с ростом тока.

    Сборка

    Шунт сделал из текстолита и куска проволоки из черного метала, сопротивление получилось примерно 0,001 Ом, чего вполне достаточно. Крепится к корпусу на стойки для печатных плат.

    Разместил все в готовом корпусе:

    Готовый корпус заводского изготовления (G768 140x190x80мм).

    Чертеж передней панели:

    Плата от компьютерного блока питания, легко устанавливается в этот корпус.

    Сзади установлен вентилятор охлаждения, он продувает воздух через весь корпус, в верхней крышке насверлил отверстий по бокам для выхода воздуха. Обороты заданы DC-DC преобразователем, питание взято с дежурки 20V.

    Плата индикации:

    Вид сверху:

    Вид снизу:

    Плата создана в программе Dip Trace Скачать

    Плата управления:

    Вид сверху:

    Вид снизу:

    Плата создана в программе Dip Trace Скачать

    Код программы для Atmega8

    Код создан в среде CodeVisionAVR. Особо ничего не придумывал, использовал математику с float. Архив с проектом, в нем же можно найти прошивку Скачать

    // Voltage Reference: AREF pin#define ADC_VREF_TYPE ((0

    Переделка компьютерного блока питания ATX на +-40В

    

    Или как сделать дешёвый блок питания для усилителя на 100 Вт

    -А сколько будет стоить УНЧ Ватт на 300?

    -Смотря для чего 🙂

    -Дома слушать!

    -баксов *** нормальный будет…

    -OMG! А подешевле никак?

    -Ммммм… Надо подумать…

    …И вспомнилось мне об импульсном БП, достаточно мощном и надёжном для УНЧ.  

    И начал я думать, как переделать его под наши нужды 🙂 

    После недолгих переговоров, человек, для которого всё это замышлялось сбавил планку мощности с 300 Ватт до 100-150, согласился пожалеть соседей. Соответственно импульсника на 200 Вт будет более, чем достаточно. 

    Как известно, компьютерный блок питания формата АТХ выдаёт нам 12, 5 и 3,3 В. В АТ блоках питания было ещё напряжение “-5 В”. Нам эти напряжения не нужны. 

    В первом попавшемся БП, который был вскрыт для переделки стояла полюбившаяся народом микросхема ШИМ – TL494. 

    Блок питания этот был АТХ на 200 Вт фирмы уже не помню какой. Особо не важно. Поскольку товарищу “горело”, каскад УНЧ был просто куплен. Это был моно усилитель на TDA7294, который может выдать 100 Вт в пике, что вполне устраивало. Усилителю требовалось двухполярное питание +-40В.

    Убираем всё лишнее и ненужное в развязанной (холодной) части БП, оставляем формирователь импульсов и цепь ОС. Диоды Шоттки ставим более мощные и на более высокое напряжение (в переделанном блоке питания они были на 100 В). Так же ставим электролитические конденсаторы по вольтажу превосходящие требуемое напряжение вольт на 10-20 для запаса. Благо, место есть, где разгуляться.

    На фото смотреть с осторожностью: далеко не все элементы стоят 🙂

    Теперь основная “переделываемая деталь” – трансформатор. Есть два варианта: 

    • разобрать и перемотать под конкретные напряжения;
    • спаять обмотки последовательно, регулируя выходное напряжение с помощью ШИМ

    Я не стал заморачиваться и выбрал второй вариант. 

    Разбираем его и паяем обмотки последовательно, не забывая сделать среднюю точку:

    Для этого выводы трансформатора были отсоеденены, прозвонены и скручены последовательно.

    Для того, чтобы видеть: ошибся я обмоткой при последовательном соединении или нет, генератором пускал импульсы и смотрел, что получалось на выходе осциллографом.

    В конце этих манипуляций я соединил все обмотки и убедился в том, что со средней точки они имеют одинаковый вольтаж.

    Ставим на место, рассчитываем цепь ОС на TL494 под 2,5V с выхода делителем напряжения на вторую ногу и включаем последовательно через лампу на 100Вт. Если всё заработает хорошо – добавляем в цепочку гирлянды ещё одну, а затем ещё одну стоваттную лампу. Для страховки от несчастных разлётов деталек 🙂

    Лампа, как предохранитель 

    Лампа должна мигнуть и потухнуть. Крайне желательно иметь осциллограф, чтобы иметь возможность посмотреть, что творится на микросхеме и транзисторах раскачки. 

    Попутно, тем кто не умеет пользоваться даташитами – учимся. Даташит и гугл помогают лучше форумов, если есть прокачанные навыки “гугление” и “переводчик с альтернативной точкой зрения”.

    Примерную схему блока питания нашёл в интернете. Схема очень даже простая (обе схемы можно сохранить в хорошем качестве):

    В конечном итоге она получилась приблизительно вот такой, но это очень грубое приближение, не хватает много деталей!

    Конструктив колонки был согласован и сопряжён с блоком питания и усилителем. Получилось просто и симпатично:

    Справа – под обрезанным радиатором для видеокарты и компьютерным кулером находится усилитель, слева – его блок питания. Блок питания выдавал стабилизированные напряжения +-40 В со стороны плюсового напряжения. Нагрузка была что-то около 3,8 Ом (в колонке два динамика). Поместилось компактно и работает на ура!

    Изложение материала достаточно не полное, упустил много моментов, так как дело было несколько лет назад. В качестве помощи к повторению могу порекомендовать схемы от мощных автомобильных усилителей низкой частоты – там есть двухполярные преобразователи, как правило, на этой же микросхеме – tl494.

    Фото счастливого обладателя этого девайса 🙂

    Так символично держит эту колонку, почти как автомат АК-47… Чувствует надёжность и скорый уход в армию 🙂

    Переделка компьютерного блока питания ATX в регулируемый блок питания

    Основа современного бизнеса – получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги.

    К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, – просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности.

    В этом блоке питания есть все что нужно – различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет.

    При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности.

    С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат – импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

    Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках “Дефект” столовой ложкой, а не покупать новую часть.

    Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все – “труба”, то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

    Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак – несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания.

    Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты.

    Цель – не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

    Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает – можно делать пробный пуск и измерить все напряжения.

    +12 В – желтый

    +5 В – красный

    +3,3 В – оранжевый

    -5 В – белый

    -12 В – синий

    0 – черный

    По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

    Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме.

    Если их замкнуть – блок включится и вентилятор – индикатор включения – начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это “черный” и “зеленый”.

    Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

    Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

    Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах.

    Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е.

    лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

    Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

    Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов.

    Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм.

    Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет.

    Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

    Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

    Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений.

    Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте.

    Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

    Замеряем все напряжения по шинам

    +12 В: +2,5 … +13,5

    +5 В: +1,1 … +5,7

    +3,3 В: +0,8 … 3,5

    -12 В: -2,1 … -13

    -5 В: -0,3 … -5,7

    Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко.

    При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А.

    Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току.

    По крайней мере с шины – 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод – вполне.

    Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром – вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

    Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод.

    Порой его припаивают к пластинке – типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули.

    Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

    Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента.

    Быстро, а значит экономически целесообразно.

    При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

    Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

    Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения – достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

    Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор.

    Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор – для подбора срабатываний по току.

    Но получилось неважно – нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

    Измерение параметров дало следующие результаты:

    Шина напряжения, В
    Напряжение на холостом ходу, В
    Напряжение на нагрузке 30 Вт, В
    Ток через нагрузку 30 Вт, А

    +12
    2,48 – 14,2
    2,48 – 13,15
    0,6 – 1,28

    +5
    1,1 – 6
    0,8 – 6
    0,37 – 0,85

    -12
    2,1 – 11,1
    0,2 – 7,7
    0,17 – 0,9

    -5
    0,17 – 5
    0 – 4,8
    0 – 0,8

    Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

    Диоды я взял от старого блока. Диодные сборки S20C40C – Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

    Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись 🙂 , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

    После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

    Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 – измерял напряжение, а цифровым – ток. Получился неплохой тандем.

    По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала.

    При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

    По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

    Overclockers.ru

    Продолжение, начало здесь.

    Оглавление

    Модернизация импульсного блока питания

    Если нужен блок питания для нестандартных условий, можно воспользоваться построением с низкочастотным трансформатором.

    Такое решение просто в реализации и не требует особо глубоких специальных знаний, но есть у него и ряд недостатков – большие габариты, низкий КПД и качество стабилизации выходных напряжений.

    Можно изготовить импульсный БП, но это довольно сложная процедура с массой подводных камней – при малейшей ошибке будет «хлопок» и куча ненужных деталей.

    Попробуем снизить планку и ограничимся модернизацией обычного компьютерного блока питания ATX под необходимые требования.

    Гм, а что именно станет предметом рассмотрения? Вообще-то, 300-400 ваттный БП может обеспечить довольно значительную мощность, область применения у него большая.

    В одной статье трудно объять необъятное, поэтому ограничимся самым распространенным – усилителем низкой частоты, под него и попробуем осуществить переделку.

    Постановка задачи

    Блок питания довольно большой мощности, хотелось бы его использовать по максимуму. Из 12 вольт мощный усилитель не сделать, здесь требуется совсем другой подход – двуполярное питание с выходным напряжением явно побольше 12 В.

    Если БП будет запитывать самодельный усилитель, собранный из дискретных элементов, то его напряжение питания может быть любым (в разумных пределах), а вот интегральные микросхемы довольно придирчивы. Для определенности возьмем усилитель на TDA7294 – напряжение питания до 100 В (+/-50 В) с выходной мощностью 100 Вт.

    Микросхема обеспечивает ток в динамике до 10 ампер, что определяет максимальный ток нагрузки блока питания.

    Вроде всё ясно, остается уточнить уровень выходного напряжения. Допускается работа от источника питания 100 вольт (+/-50 В), но попытка выбора такого значения выходного напряжения оказалась бы большой ошибкой.

    Микросхемы крайне отрицательно относятся к предельным режимам работы, особенно при одновременном максимальном значении нескольких параметров – напряжения питания и мощности.

    К тому же, вряд ли в обычной квартире есть смысл обеспечивать столь высокий уровень мощности, даже для низкочастотных динамиков с их низкой эффективностью.

    Можно установить напряжение в 90 вольт (+/- 45 В), но это потребовало бы очень точного удержания выходного напряжения – в многоканальных блоках питания весьма затруднительно обеспечить одинаковость напряжений на разных выходах.

    Поэтому стоит немного снизить планку и установить номинальное напряжение для этой микросхемы 80 вольт (+/-40 В) – мощность усилителя немного упадет, но устройство будет работать с должным запасом прочности, что обеспечит достаточную надежность устройства.

    Кроме того, если звуковая колонка будет работать не только в низкочастотной области, но еще содержит средне-высокочастотные каналы усилителей, то стоит получить от БП еще одно напряжение, меньше «+/-40 В».

    Эффективность работы низкочастотных динамиков большого диаметра существенно ниже более высокочастотных, поэтому запитывание усилителя СЧ-ВЧ канала от тех же «+/-40 В» довольно глупо, основная масса энергии уйдет в тепло.

    Для второго усилителя хорошо бы обеспечить выход +/-20 вольт.

    Итак, спецификация блока питания, который хочется получить:

    • Канал № 1 (основной), напряжение: «+/-40 В».
    • Ток нагрузки от 0.1 А до 10 А.
    • Канал № 2 (дополнительный), напряжение: «+/-20 В».
    • Ток нагрузки от 0 до 5 А.

    Характеристики определены, осталось выбрать подходящую модель. Совсем уж старый использовать нет никакого желания, конденсаторы давно уж высохли, да и схемные решения тех времен не внушают оптимизма.

    Стоит отметить, что часть «современных» блоков питания тоже не блещет качеством работы и надежностью, но с этим можно бороться – достаточно выбирать продукцию известных фирм, к которой есть доверие.

    Кроме философского осмысления сущности БП и отбора по внешнему виду, есть вполне осмысленный критерий – их тип.

    Блок может быть выполнен по технологии «двухтактный полумост» или «однотактный прямоход», содержать в себе какую-то разновидность PFC (активную или пассивную на дросселе). Всё данные факторы оказывают влияние на качество работы и уровень помех.

    Причем, это не «просто слова», при переходе от трансформаторного БП на «импульсный» довольно часто замечается ухудшение качества звучания.

    С одной стороны, «странно», ведь такой БП обеспечивает лучшую стабильность напряжения питания усилителя. С другой, ничего странного нет – «импульсник» производит помеху при переключении силовых транзисторов основного преобразователя (и блока APFC), что выражается в высокочастотных «всплесках» на цепях питания и земли.

    Чаще всего преобразователь БП работает на частоте 40-80 кГц, что выше звукового диапазона, а потому вроде бы не должно мешать устройству, но помехи распространяются по всему усилителю и сбивают рабочую точку усилительных каскадов, что приводит к интермодуляционным искажениям, звук становится «жестче».

    В компьютерном блоке питания шины 12 В и 5 В выглядят следующим образом:

    Так что, проблема не надуманная и на борьбу с ее негативным проявлением следует потратить некоторые усилия.

    FSP ATX-300GTF

    Ничего необычного, классическая компоновка, разве что дроссель PFC вносит в картинку некоторый элемент дисгармонии. К слову, измерение характеристик и величины пульсаций на выходе показало, что наличие этого дросселя приводит лишь к тому, что блок питания становится тяжелее и немного «гудит» при мощности нагрузки 250-300 Вт.

    Удаление лишнего

    Компьютерный блок питания должен формировать массу напряжений большой мощности – 12 В, 5 В, 3.3 В, -5 В, смысл в которых сразу теряется, как только речь заходит об усилителе.

    Кроме того, БП содержит дежурный источник 5 В, но его лучше не трогать и сохранить в неизменном виде – во-первых, он используется для работы основного преобразователя, во-вторых, можно будет реализовать включение-выключение усилителя от внешнего управления или просто по появлению звукового сигнала на входе усилителя.

    Это функция потребует изготовления высокочувствительного детектора с питанием от 5 вольт и вряд ли кто-нибудь станет делать этот элемент на начальной стадии сборки усилителя, ну хоть возможность такая останется. Пусть будет, это «бесплатно».

    После удаления всех цепей формирования выходных напряжений получилось следующее:

    Оказалось не так много места, поэтому доработка не должна содержать слишком много деталей – банально не влезет. Фу ты, еще заложили в требования наличие двух выходных каналов.

    Выбор способа получения повышенного выходного напряжения

    Компьютерный блок питания формирует два основных выхода: 12 В и 5 В, этим объясняется наличие всего двух пар вторичных обмоток. Каким способом можно получить напряжение больше, чем заложено при проектировании БП?

    1. Перемотать трансформатор. 2. Поставить умножитель.

    3. Добавить второй трансформатор.

    Перемотка трансформатора

    Первый вариант понятен и прост в техническом плане. Одно «но», конструкция импульсного трансформатора не так проста, как может показаться на первый взгляд.

    Существует масса требований и ограничений, не выполнив которых можно получить либо «крайне посредственный вариант», либо, что гораздо хуже, некачественную изоляцию вплоть до поражения электрическим током. В трансформаторе первичная обмотка выполнена из двух частей.

    Первая расположена в самом начале, а потому не мешает перемотке, а вот вторая наматывается самой последней.

    Трудности умножаются тем, что между первичной и вторичной обмотками присутствует электростатический экран из медной ленты. Чтобы осуществить перемотку придется аккуратно смотать верхнюю часть первичной обмотки, убрать экран и вторичные обмотки. После чего намотать новые вторичные обмотки, восстановить экран и первичную обмотку.

    Естественно, между обмотками и экраном должна быть надежная изоляция. Дело усугубляется тем, что трансформатор пропитан лаком, а потому его разборка-сборка занятие «увлекательное» и качество выполнения доработки окажется не слишком хорошим.

    Впрочем, если у вас руки «прямые» и есть желание попробовать – некоторые рекомендации:

    • Число витков обмотки 12 В почти всегда постоянно (семь витков), что определяется не параметрами трансформатора, а единственным целым соотношением числа витков обмоток 12 В и 5 В (четыре и три). Если на семь витков приходится 12.6 вольт, то на «нужное» напряжение приходится 7*(«нужное»/12.6) число витков, с округлением до ближайшего целого.
    • При удалении обмоток 12 В и 5 В посчитайте место, которое они занимали – новая обмотка должна уместиться в эти же габариты.
    • При наличии места лучше использовать провод диаметром 0.8-0.9 мм. Если сечения одного провода недостаточно, то стоит увеличивать количество проводов, а не их сечение (диаметр)
    • Крайне аккуратно наматывайте экранирующий виток ленты (не замыкайте начало с концом) и изоляцию под и над ним – основной дефект самодельных трансформаторов заключается в пробое изоляции или закорачивании экранирующей обмотки. Медная лента жесткая с острой кромкой, легко режет изоляцию. В домашних условиях лучше использовать алюминиевую фольгу – она значительно мягче и и шансов порезать изоляцию меньше. Кроме того, ее проще найти. Увы, у такого подхода есть небольшой недостаток – к алюминиевой фольге труднее подсоединить отвод.

    И всё же я бы не рекомендовал этот вариант переделки для тех, у кого нет опыта намотки импульсных трансформаторов. Не стоит, может выйти боком. К слову, если человек разбирается в вопросе, то ему проще намотать трансформатор полностью «с нуля», по крайней мере, не будет путаться под ногами этот «лак», да и число витков во всех обмотках можно будет выбрать оптимальным.

    Умножитель

    Второй вариант довольно сложен в реализации и обладает рядом серьезных недостатков. Пример такого построения изображен на рисунке:

    • TV1 – обычный трансформатор блока питания, без каких-либо доработок.
    • TV1.1 – первичная обмотка.
    • TV1.3 и TV1.4 – обмотки канала 5 В.
    • TV1.2 и TV1.5 – обмотки, совместно с TV1.3 и TV1.4 формирующие канал 12 В.

    Для анализа важен тот факт, что форма импульсов напряжения на выходе трансформатора с гладким верхом, а не «синус», «пила» или другие вариации. Устройство работает следующим образом – на первичной обмотке следуют импульсы напряжения прямоугольной формы с некоторой скважностью.

    Напряжение импульсов на первичной обмотке составляет половину напряжения питания или около 140 В при номинальном напряжении сети. На вторичной стороне форма импульсов сохраняется, а амплитуда зависит от числа витков и распределяется примерно как 9 В на обмотках «канала 5 В» (TV1.3 и TV1.

    4) и 21 В на «канале 12 В» (TV1.2+TV1.3 и TV1.4+ TV1.5).

    Предположим, что в данный момент поступает импульс положительной полярности и на верхних выводах обмоток следует «+». Расставим напряжения в контрольных точках:

    • A = +21 В.
    • B = +9 В.
    • С = -9 В.
    • D = -21 В.

    Отсюда можно сразу вычислить напряжение в токе «F», оно будет чуть меньше цепи «B» на величину падения напряжения на диоде D1.

    При данной полярности диод D2 закрыт, поэтому напряжение в точке «E» будет определено при противоположной полярности импульса.

    • Напряжение на конденсаторе C2 = +8.4 – (-21) = 29.4 В.

    Сменим полярность импульса, напряжения в контрольных точках поменяют знак:

    • A = -21 В.
    • B = -9 В.
    • С = +9 В.
    • D = +21 В.

    Полярность сменилась и открывается диод D2. Напряжение в точке «F» станет чуть меньше цепи «B» или около +8.4 В.

    • E = +8.4 В.
    • Напряжение на конденсаторе C1 = +8.4 – (-21) = 29.4 В.

    Схема симметричная, поэтому напряжения конденсаторов обязаны быть одинаковыми. Из анализа предыдущей полярности импульса следует, что

    • Напряжение в точке «F» смещено относительно точки «D» на величину напряжения конденсатора С2 (29.4 В) и равно +21 + 29.4 = +50.4 В.

    Нет смысла анализировать аналогичное состояние точки «E» при смене полярности импульса, схема симметричная и там будет столько же, сколько сейчас на точке «F», +50.4 В.

    В итоге, может интересовать только «E» и «F», ведь из них получается выходное напряжение. Соберем значения в этих точках в таблицу. Впрочем, забыл еще одно состояние, «пауза» импульса от ШИМ-регулировки.

    Этот случай очень прост, на всех обмотках нулевое напряжение и в точках «E» и «F» получается одно и то же напряжение +29. 4 В, хранимое в конденсаторах.

    (При анализе не учитывалась конечная емкость конденсаторов и непрямоугольность формы импульсов).

    Импульс:
    «E»
    «F»

    Положительный
    +50.4 В
    +8.4 В

    Отрицательный
    +8.4 В
    +50.4 В

    Пауза
    +29.4 В
    +29.4 В

    Выпрямительная сборка D3 «выбирает» наибольшее напряжение из двух входов («E» и «F»). Это означает, что на входе дросселя L6 будут идти импульсы амплитудой 50 В с паузой 8 В. При скважности ШИМ 70% на выходе сформируется напряжение примерно 37 вольт.

    Всё сказанное относилось к получению повышенного напряжения положительной полярности. Если необходимо сформировать и отрицательный выход, то схему следует «удвоить» – добавить конденсаторы C1, С2 и C3, диоды D1 и D2, пару диодов в сборку D3 и намотать вторую обмотку на выходном дросселе. Не забудьте сменить полярность конденсаторов и диодов.

    У подобного решения только одно достоинство – не придется что-то делать с трансформатором. Впрочем, есть еще одно – незначительное, девиация напряжения на выходном дросселе небольшой амплитуды, поэтому размеры дросселя и его индуктивность могут быть сниженной величины. Фактически, можно использовать старую обмотку канала 12 В.

    Недостатков больше и они серьезные:

    • Весь импульсный ток протекает через повышающие конденсаторы С1 и С2.
    • Очень большой ток заряда конденсаторов в начальный момент времени. Кроме снижения срока службы конденсаторов, высокая величина тока может вызвать срабатывание общей защиты блока питания и он отключится.
    • Низкий диапазон регулирования выходного напряжения.
    • Невозможно получить больше одного канала со стабилизацией выходного напряжения. Выходы «+37 В» и «-37 В» получаются по вышеприведенной схеме, а вот обычные «+/-12 В» придется формировать на отдельном дросселе при повышенном уровне пульсаций с частотой сети и низкой стабильностью.

    Основной недостаток схемного решения – весь ток протекает через конденсаторы С1 и С2.

    Довольно просто найти конденсаторы с подходящей емкостью или ESR, но вот величина импульсного тока у них окажется низка.

    Чтобы не быть голословным, подберем подходящий конденсатор для рассматриваемого блока питания усилителя (выходное напряжение соответствует заданным условиям, величина тока до 10 А).

    Ранее я ссылался на конденсаторы общего применения фирмы Jamicon серии LP, посмотрим, что есть в данном исполнении – 2200 мкФ 50 В. Максимальный ток 2 ампера. Совершенно не подходит, конденсатор выйдет из строя через неделю работы усилителя. Переходим к серьезным сериям, «Low ESR». Например, серия WL:

    Номинал
    Диаметр, мм
    Высота, мм
    ESR, мОм
    Макс. ток, А

    2200 мкФ 35 В
    16 (18)
    32 (25)
    40
    3.8 (3.5)

    1500 мкФ 50 В
    16 (18)
    36 (32)
    51
    4 (3.9)

    1000 мкФ 35 В
    13 (18)
    25 (15)
    70
    2.5 (2.1)

    1000 мкФ 50 В
    13 (18)
    40 (20)
    70
    3.4 (2.8)

    680 мкФ 35 В
    10 (16)
    28 (15)
    103 (86)
    2 (1. 7)

    680 мкФ 50 В
    13 (16)
    30 (20)
    86
    2.6 (2.3)

    В круглых скобках указывается характеристики альтернативного варианта исполнения корпуса конденсатора.

    Хочется отметить интересный момент, для конденсатора «680 мкФ 35 В» первое исполнение, в сравнении со вторым, несет меньшее внутреннее сопротивление и максимальный ток, обычно происходит обратное – снижение ESR повышает величину тока. Видимо, причина в разной площади поверхности корпуса.

    Если смотреть на ESR, то все конденсаторы вполне устраивают. Ну, сколько может «упасть» на сопротивлении 40-90 мОм при токе 3-8 ампер? Пустяк. Блок питания работать будет. Вот так и появляются «китайские» поделки. К слову, в Китае производится масса качественной продукции, это местные фарцовщики закупают хлам, отсюда и происходит недоверие к китайской продукции … причем зря.

    Ну ладно, собираем для себя, поэтому делать плохо не будем. Конденсатор должен выдерживать ток не менее 10/2=5 А в долговременном режиме и на одном конденсаторе получить такую характеристику не удастся.

    Остается вариант с установкой пары или тройки конденсаторов параллельно. Два конденсатора «1000 мкФ 35 В» обеспечат ток до 5 (4.2) ампера, что маловато.

    Можно взять конденсаторы того же номинала, но чуть большего напряжения «1000 мкФ 50 В», предельный ток составит величину 6.4 (5.6) ампера.

    С учетом конечной индуктивности выходного дросселя этот вариант может устроить, но не особо хорошо. Перейдем к утроению конденсаторов, «680 мкФ 35 В» обеспечит ток до 6 (5.1) А, или «680 мкФ 50 В» 7.8 (6.9) А. Последний вариант смотрится уже веселее, блок питания сможет работать достаточно долго.

    В результате получается, что в блок питания придется установить 3*2*2=12 конденсаторов «680 мкФ 50 В», выйдет не самое компактное устройство, а место в БП ограничено.

    Схема моделировалась, но практически не испытывалась, поскольку не лежит у меня душа к таким решениям. Этот вариант доработки дается на ваш страх и риск.

    Экономия топлива

    Как известно, при кратковременных поездках в городе автомобильный аккумулятор не успевает заряжаться, постоянный недозаряд приводит к сульфатации пластин и к сокращению службы самого аккумулятора.

    При эксплуатации авто только в городском режиме советуют раз в 3-4 месяца полностью заряжать автомобильный аккумулятор штатным зарядным устройством. Да вот беда – нормальное зарядное есть не у всех, денег на него жалко, а заряжать аккумулятор желательно регулярно.

    Для тех, у кого нет лишних 30-50 баксов на автомобильную зарядку от сети, а иметь оную уж очень хочется, и предназначена эта статья.

    Очень неплохую вещь можно сделать из обычного компьютерного блока питания АТХ. Компьютерный блок питания ваще шикарная штука, ибо предназначен для того, чтобы молотить круглосуточно, запитывая материнку, процессор, винчестер, да еще и выдавать при этом довольно солидные токи.

    В самих компьютерах БП периодически мрут, ибо сделаны в большинстве своем китайцами, а эти ребята привыкли экономить на всем – занижать параметры конденсаторов, ставить резисторы меньшей мощности, и вообще за это им огромное спасибо, ибо благодаря их стараниям у меня, к примеру, нет недостатка в компьютерных блоках питания для экспериментов.

    Достать компьютерный БП проще простого – нужно пойти в любой компьютерный магазин, у которого есть свой сервисный центр, и купить за очень недорого «дохлый» блок питания.

    Как правило у любого сервисного центра есть здоровенная коробка этих самых БП, ибо чинить их экономически невыгодно – компьютерные магазины, вообще-то зарабатывают не на ремонте БП, а на их продажеТак что если подойти к директору, прикинуться бедным студентом, рассказать жалобную историю, что мол детали дорогие, а денег нет, то думаю за каких-то десять баксов можно притащить домой солидную кучу блоков питания.

    Скажу сразу – не всякий блок питания подойдет для переделки. Внутри блока питания стоит микросхема ШИМ-контроллера, которая управляет полумостовым преобразователем.

    Нас интересует блок питания с установленным ШИМ TL 494 (аналоги KA7500, DBL494, M5T494 и тому подобное).

    На этой микросхеме с небольшими изменениями можно получить не только автомобильное зарядное устройство, но и полноценный лабораторный блок питания с регулируемым стабилизированным напряжением и ограничением тока.

    Из блоков питания с установленными ШИМ SG6105 , АТ2003 и т.д. получить блок питания с регулируемыми параметрами не получится, максимум что из него можно выжать – автомобильное зарядное 14.2-14.8В/3-6 А.

    В этой статье  мы рассмотрим переделку БП на самой распространенной ШИМ TL 494. Структурная схема ШИМ показана на рисунке:

    После того, как  БП принесли домой, разобрали, прошлись кисточкой и пропылесосили, нужно убедиться, что входные цепи, а также источник питания дежурного режима (так называемая дежурка) работают и выдают на ШИМ питание.

    Для начала проверяем работоспособность источника дежурного питания. Дежурка работает всегда, когда на блок питания подано 220В и включен тублер. Она выдает два напряжения – одно на питание ШИМ, другое +5Vsb (Standbye). Сигнал Standbye – фиолетовый провод большого разъема питания, 9 контакт.

    При включенном в сеть БП на 9 контакте должно быть 5В. Если нет, ищем неисправность в цепях дежурки. Если есть – проверяем наличие питания на выводе 12 ШИМ. Микросхема запускается  при подаче на вывод 12 напряжения от 7 до 41В (в среднем дежурка выдает 12-15В).

    Схема дежурного источника питания выглядит примерно так:

    Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Чаще всего высыхают электролитические конденсаторы, теряют емкость конденсаторы обвязки. Прозваниваем транзистор, диоды, первичную и вторичную обмотки трансформатора на предмет КЗ.

    Если дежурка работает, а ШИМ не запускается, проверяем работоспособность ШИМ-преобразователя. Для этого необходимо иметь стабилизированный источник питания +12В. Подключаем источник к выводу 12 ШИМ, вывод 4 закорачиваем на землю.

    При наличии осциллографа можно стать на  ноги 8, 11 и посмотреть сигналы на транзисторы раскачки, а на  ноге 5 можно наблюдать «пилу» работающего внутреннего генератора.

    Если осциллографа нет, то мультиметром проверяем наличие +5В на выводе 14 – если есть, то внутренний источник опорного напряжения работает.

    Очень часто случается, что при закорачивании вывода 4 ШИМ на землю БП АТХ начинает работать. В этом случае причина неисправности кроется в цепях защиты от перегрузок и цепях формирования служебных сигналов. Так как в дальнейшем  эти цепи защиты нам будут не нужны, и от +3.

    3/+5В мы откажемся вообще, проверка цепей защиты здесь рассматриваться не будет. Должен заметить, что включение БП АТХ происходит при замыкании сигнала PS_ON на землю (зеленый провод, 16 контакт).

    Так как этот сигнал относится к цепям формирования служебных сигналов, он нас не интересует – мы запустим БП без него.

    Наша основная задача – запустить блок питания и получить на выходе +12В, с которым мы и будем в дальнейшем работать. Простейшая схема компьютерного блока питания на ШИМ TL494 (аналог КА7500) показана на рисунке ниже:

    Схема БП состоит из следующих блоков:

    1. Сетевой фильтр и выпрямитель.

    2. Схема измерений перенапряжений, она же схема защиты и формирования служебных сигналов.

    3. Дежурный источник питания.

    4. Усилитель мощности.

    5. Выпрямитель для напряжения +12В вторичной цепи источника питания.

    6. Схема промежуточного усилителя.

    Микросхему ШИМ легко найти невооруженным взглядом

    Допустим ШИМ работает, но на выходе напряжений нет. Проверяем цепи усилителя мощности  и силовые транзисторы.

    Все осциллограммы снимать относительно эмиттера. Основные неисправности – обрывы резисторов  в цепях базы, потеря емкости конденсаторами или их пробой, межвитковое КЗ в обмотках трансформатора, пробой высоковольтных транзисторов.

    Итак, наша основная задача – получить на выходе +12В. Условно будем полагать, что с этой задачей мы успешно справились, ибо разбор конструкции БП АТХ и принципы его ремонта не входит в нашу первоочередную задачу. Выходная часть с выпрямителем и фильтрами питания сделаны по примерно одной и той же схеме:

    Так как напряжения +3. 3В, +5В, – 5В и -12В нам не нужны, можно смело выпаивать все компоненты на выходе, отвечающие за эти напряжения.

    Оставляем выходной дроссель, электролитический конденсатор в цепи +12В заменяем на 2200 мкФ 50В (изначально там стоит конденсатор, расчитанный на рабочее напряжение 16В, в случае переделки БП под выходное напряжение 25В он взорвется). Также не лишним будет заменить сборку диодов Шоттки в цепи +12В на другую, с большим прямым током.

    Можно заменить эту сборку на ту, которая стояла в цепи +5В или поставить сборку диодов Шоттки на более высокий ток, скажем, 10TQ045 с прямым током 10А или MBR1545CT с прямым током 15А. Заодно выпаиваем со схемы весь жгут проводов – он нам больше не понадобится.

    После выпаивания запасных компонентов должно получиться примерно следующее:

    Не бойтесь выпаивать все лишнее – для запуска ШИМ TL494 нужно всего 4 сопротивления и один конденсатор (не считая пары переменных резисторов).

    Они уже есть на схеме, даже если Вы выпаяете лишнее, потом ориентируясь по печатным проводникам, можно будет вернуть нужные компоненты (3 сопротивления и 1 емкость) на место.

    Нижняя микросхема LM339 – счетверенный компаратор, на котором собрана схема защиты, также не нужна. Ее можно смело выпаивать или выкусывать, я обломался

    На плате оставляем только дроссель (ниже радиатора), и заменяем конденсатор в цепи +12В на 2200 мкФ 35В – изначально там стоит конденсатор на напряжение 16В.

    При переделке компьютерного БП в лабораторный источник питания я опирался вот на эту схему, называемую в народе «схема итальянца» (кликабельно для увеличения):

    Или же можно воспользоваться схемой попроще:

    Здесь показана минимальная обвязка ШИМ TL494 для того, чтобы микросхема заработала. Так как раньше блок питания уже как-то работал, скорей всего эта обвязка уже присутствует в схеме, нужно только изменить подключение выводов 1, 2, 4, 15 и 16.

      На контакт 12 подается напряжение с дежурного источника питания. Контакт 4 садится на землю. Можно проследить дорожку и выпаять диод, через который на контакт 4 подается сигнал ошибки со схемы защиты.

    Схема защиты с сигналом PS_ON нам уже тоже не нужна, поэтому ее можно смело выковыривать из платы, вместо нее мы соберем схему ограничения тока.

    * Прослеживаем по дорожкам выводы 15 и 16, отпаиваем от них компоненты и соединяем согласно схеме.

    * Прослеживаем по дорожкам распайку выводов 1, 2, отпаиваем от них  компоненты и соединяем согласно схеме.

    Кроме этого, нам понадобится два переменных резистора нужного номинала, и шунт 0.1-0.0.1. Шунт я сделал с двух «керамических» сопротивлений номиналом 0.2 Ом, соединив их параллельно.

    На самом деле это не керамические сопротивления, а обычные резисторы, зацементированные в керамику, поэтому при нагреве их номинал «уплывает», желательно в качестве шунта применять что-то типа старых советских проволочных резисторов С5-16. Вот что вышло в итоге:

    Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0.1-0. 01 Ом. Ну и конечно мало-мальские познания в электронике и большое желание замутить что-то такое на зависть всем пацанам из соседних гаражей. Что в танке главное, знаете? Правильно, плюс небольшая внимательность.

    В принципе уже после этого напряжение на выходе можно менять в пределах от 2.5 до 25В, а ограничение тока можно выставлять от 0.5 до 15 А. Выставив однажды сопротивлением 14.2-14.6В и ограничив ток в пределах 0.

    1С от емкости заряжаемой батареи (для батареи 50А*ч ток заряда должен быть равен 5А), мы получим полноценное зарядное устройство. Так как схема БП АТХ является по-сути стабилизатором напряжения, то она будет поддерживать заданное раннее напряжение, а вот ток по мере заряда аккумулятора будет падать.

    И это является очень большим преимуществом этого зарядного устройства по сравнению с остальными зарядными, у которых стабилизированный ток заряда – нет риска что аккумулятор «закипит».

    Аккумулятор можно бесконечно долго держать подключенным к этому зарядному устройству – по мере набора емкости ток заряда будет снижаться вплоть до ноля, фактически переходя в заряд «капельным режимом», то есть поддерживая емкость аккумулятора неограниченное время.

    Но так как такое зарядное устройство будет использоваться раз в два-три месяца, если не раз в год, а остальное время оно просто будет валяться в гараже, есть очень большой соблазн потратить еще один день, и сделать из него полноценный лабораторный блок питания. Понадобится только две измерительные головки – вольтметр и амперметр.

    Можно прикрутить китайский блок 2 в 1, амперметр + вольтметр. Либо для пущей убедительности возможна установка аналоговых вольтметра и амперметра. Амперметр нужен обязательно с шунтом на тот предел, который указан на шкале. Иначе замучаетесь подбирать отрезок провода необходимого сопротивления.

    В моем случае манганиновый шунт уже встроен в амперметр.

    Вырезав из текстолита лицевую панель, профрезеровав отверстия под амперметр, вольтметр, регуляторы и прочее, я собрал все воедино.

    Можно пойти другим путем, и сделать переднюю панель скажем из нержавейки, порезав ее лазером.

    В результате получился полноценный блок питания с пределами 25В/10А (ток фактически больше, порядка 15А)

    Работа блока на нагрузку в виде автомобильной лампы.

    Вид блока со стрелочными индикаторами

    Штатный вентилятор нужно подключить к бывшему выходу +12В, развернув его так, чтобы он дул внутрь блока, охлаждая радиаторы силовых транзисторов и выходных диодов. У меня заодно он обдувает и шунт.

    При этом чем выше напряжение, тем больше скорость вращения вентилятора.

    Не пытайтесь изменить направление вращения, изменяя полярность питания – внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет

    ВНИМАНИЕ! Схема фактически не содержит защиты от короткого  замыкания, вместо нее на одном из компараторов ошибки ШИМ TL494 собрано ограничение выходного тока.

    Это значит, что если замкнуть накоротко выходы источника питания, ток короткого замыкания в цепях будет равен лишь выставленному ранее ограничению тока! Блок питания достаточно мощный, если ограничение тока будет выставлено на максимум, он будет «вдувать» в нагрузку (которая по сути шунт 0.

    1 Ом) максимальный ток. Помните об этом, если Вы не хотите, чтобы из вашего блока ушел волшебный дым, на котором работает вся электроника.

    Для избежания подобных казусов нагрузка в моем случае подключается через предохранитель на 15А. Есть хотя бы один шанс из ста что при КЗ  предохранитель успеет сгореть ранше, чем сгорит что-то в схеме. К сожалению, происходит ровно наоборот – схема вылетает, защитив собой предохранитель

    ВНИМАНИЕ ШТРИХ! При подключении к аккумулятору строго соблюдать полярность! В противном случае все тот же волшебный дым покинет какой-то компонент схемы, и он больше никогда не будет работать.

    Порядок зарядки аккумулятора.

    На холостом ходу выставить регулятором тока минимальное ограничение тока (крайнее левое или крайнее правое положение сопротивления R3 согласно вышеприведенной схеме, зависящее (положение) от распайки резистора), регулятором напряжения выставить напряжение 14.2-14.6В для обычных аккумуляторов и 14. 8-15.6 для кальциевых. Отключить источник питания от сети. Подключить аккумулятор, соблюдая полярность. Включить источник питания и регулятором тока выставить нужный ток заряда.

    При этом напряжение немного упадет до какого-то значения, которое зависит от внутреннего сопротивления аккумулятора, но стабилизатор тока будет держать нужный ток. По мере набора аккумулятором емкости ток заряда будет падать, а напряжение вернется до установленного ранее значения.

    Во избежании взрыва подключать и отключать аккумулятор только при выключенном источнике питания!!!!

    Примечание. Длительная  нагрузка (порядка 10 часов) источника питания двумя параллельными автомобильными лампами 12В 55Вт при напряжении 14.6В и суммарном токе потребления почти 8А показало, что при работающем обдуве какого-то сильно критичного нагрева компонентов внутри блока питания нет.

    Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами:

    1. Фантастическая живучесть и работоспособность. Компьютерные импульсные блоки питания с принудительным охлаждением имеют КПД порядка 80-85%, диапазон входного напряжения 160-240В, время наработки на отказ порядка 50 тыс. часов.

    Другими словами, блок питания предназначен для того, чтобы сутками молотить включенным. Так как используется только напряжение +12в, то выходной трансформатор нагружен даже меньше, чем если бы использовались также +5В и +3.

    3В, ибо их обмотки намотаны на одном сердечнике выходного трансформатора.

    2. Стабилизация выходного напряжения в пределах ±5% для значения +12В

    3. Ограничение тока, из чего следует, что зарядное такого типа смело можно применять для заряда необслуживаемых гелиевых аккумуляторов – риск «закипятить» аккумулятор  отсутствует. Последний возьмет столько тока, сколько ему нужно.

    4. Возможность заряжать аккумулятор не отключая его от автомобиля.

    5. Полноценный блок питания с широкими пределами регулирования для решения повседневных задач.

    6. Отлично вписывается в интерьер квартиры

    Недостаток – время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого. Это компенсируется невозможностью довести аккумулятор до «кипения», если бы заряжать его постоянным стабильным током.

    Преобразование

    ATX в лабораторный источник питания: 6 шагов (с изображениями)

    Планирование — самый важный этап любого успешного проекта. Чтобы спланировать этот проект, я создал несколько изображений. Я собираюсь использовать четыре зажимных стержня, выключатель питания, держатель предохранителя, силовой резистор и два светодиода с ограничивающими ток резисторами. На первом изображении подробно описаны схемы соединений внутри источника питания, где все будет подключено

    Когда источник питания подключен к розетке, но еще не включен, он обеспечивает сигнал ожидания + 5В, который может использоваться материнская плата для таких вещей, как функция wake-on-LAN. Мы используем эту сигнальную линию, чтобы указать, когда источник питания подключен с помощью красного светодиода и резистора 330 Ом. В моем источнике питания эта сигнальная линия имеет фиолетовый провод и помечена на плате «+ 5VSB».

    При первом включении блока питания он должен пройти последовательность запуска, чтобы убедиться, что все работает, и что он может обеспечить стабильное питание компьютера. Когда последовательность запуска завершена, она сигнализирует материнской плате, обеспечивая + 5В на сигнальной линии «Power Good / Steady».Мы будем использовать еще один красный светодиод и резистор 330 Ом, чтобы указать, когда блок питания работает. В моем источнике питания эта сигнальная линия имеет серый провод и помечена на плате «PGS».

    Силовой резистор представляет собой резистор 10 Ом, 10 Вт, обычно называемый «песчаной косой», потому что он обычно покрыт материалом, напоминающим песок. Большинству источников питания требуется минимальная нагрузка для их работы, поэтому этот резистор песочного типа обеспечивает постоянную минимальную нагрузку между шиной +5 В и землей. Я слышал, что более новые блоки питания также нуждаются в нагрузке на шину 3,3 В, ваш пробег может отличаться.

    На втором изображении вы можете увидеть схему передней части блока питания. Здесь я отметил, где будут размещаться компоненты, включая светодиоды, зажимные стойки, держатель предохранителя и переключатель.

    Третье изображение — как выглядит блок питания без каких-либо доработок. Вы можете увидеть различные напряжения, которые я собираюсь использовать вдоль переднего края.

    Еще одно преобразование импульсного источника питания

    DIY Импульсный источник постоянного тока

    Итак, вот история: мне нужен был источник тока 1А +, может быть, 1.5А, точно не более 2Ампер.

    Вы предложите мне использовать настольный блок питания в режиме ограничения тока. Но расходные материалы для верхней скамьи тяжелые и дорогие. Более того, я не хочу носить его на поле, против стихий, и в большинстве случаев я не хочу оставлять его без присмотра.

    Исследования

    Я начал искать альтернативы, зная, что компьютерные блоки питания дешевы, легки и доступны. Так почему бы не преобразовать один из них в текущий источник? Не должно быть так сложно.

    С другой стороны, блок питания компьютера имеет резервное напряжение 5 В, которое я могу использовать для питания дополнительных схем. Как насчет того, чтобы отказаться от Arduino с маленьким дисплеем? !! Может быть позже.

    А пока начинаю искать схемы блоков питания. Нашел кого-то еще, выполняющего преобразование с регулируемым напряжением и током, затем составил план по изменению схемы TL494…
    Затем я нашел старый компьютерный корпус:

    добыл припасы,

    Начал с чистки блока питания, зачистил провода, чтобы работать было легче и… получил сюрприз: № 494.В центре устройства находится микросхема DIP16 с маркировкой 2003:

    .

    Нет проблем, все просто: я найду таблицу и спроектирую новую конверсию…

    Не повезло. Не удалось найти в интернете даташит на 2003 год. Расстроился и обратился к другому блоку питания, который у меня лежал, надеясь, что новый основан на 494. Я открыл блок, он был 494, пока все хорошо. Некоторые дымчатые следы напомнили мне, почему я его не использовал … также казалось, что я использовал его как источник компонентов, так что … я был более разочарован.

    Опыт форумов

    Вернулся в Интернет за помощью и нашел несколько дешевых старых блоков питания на продажу и некоторых других ребят, модифицирующих блоки питания ATX.
    Сейчас покупка выглядит поражением, поэтому я решил отложить ее и поискать чужой перевод на постоянный ток (в центре внимания, конечно же, микросхема 2003 года).

    Могущественный Интернет предоставил 2 типа решений:

    1. Вы можете настроить LM317 в конфигурации с постоянным током. »- не вентилятор из-за низкой эффективности.
    2. « Я не советую возиться с этими 400-ваттными блоками питания, если вы точно не знаете, что делаете… Джон. ”- определенно не фанат, также не уверен в том, что делал…

    Поблагодарив Джона за его совет, я перешел к результатам поиска, отличным от английского.

    Эврика момент

    И я нашел на diodnik.com статью «Сделай сам»: какой-то парень модифицировал SMPS на базе микросхемы 2003 года и любезно поделился подробностями.

    Спасибо, парень, что забыл подписать свою работу.

    Это был великий момент, еврика, момент. Наконец появилась надежда, свет поднимался над горизонтом. Счастье было удвоено, когда открылась веб-страница с опцией на английском языке, на которой отображается русский текст. Это как в кино, когда все русские говорят по-английски с акцентом, только в этот раз все было наоборот.

    Я переводил статью с помощью моего , большую часть времени иногда отстойного друга: переводи.google.com
    Вот результат: оригинал 2003 года переведено.pdf

    Перевод выполнен, теперь я вернулся к своему проекту . .. запустил программу CAD и нарисовал схему:

    После этого я заказал некоторые компоненты, затем я понял, что есть ситуация, когда что-то может пойти не так, действительно неправильно: нет нагрузки или загрузка R слишком большая.
    Итак, я начал придумывать решение этой новой проблемы … Затем заказал дополнительные компоненты … Да, в это время я также задавался вопросом, действительно ли лабораторный источник питания настолько дорог, и да, я пришел к выводу, что нельзя ставить цену на удовольствие, так что фанк лабораторные принадлежности, я переделываю старый хлам.

    Шаг 1

    Первый шаг в моддинге — отказ от мода. Просто простой тест, чтобы увидеть, начну ли я с чего-то функционального: заменить конденсаторы, которые, казалось, высохли (они выглядели на удивление хорошо по сравнению с беспорядком на плате), включили питание и…. да конечно THR задул… что за жизнь без веселья !?

    При замене термистора возникли вопросы:

    • какой термистор был? (SCK 082) нашел что-то для его замены… вроде как
    • что вызывает отказ термистора? подозреваемый №1: новые колпачки — выглядят нормально; Следующие (я имею в виду, что рядом) — диоды — посмотрите нормально, вытащили один, измерили нормально и… Я достаточно туп, чтобы не знать кодов диодов, и достаточно любопытен, чтобы задать вопрос Google: LH 3A05. Результат не выглядел однозначным, но я нашел некоторую информацию о том, что это диод 3A @ 50V. Я нормально отношусь к 3А, но 50В ??? !!! поэтому я вернулся и заказал новые компоненты: P600K 6A @ 800V (он не работал с тем, что на нем было установлено, поэтому я просто взял молоток побольше)

    (позже редактировать) Друг сказал мне, что у него есть блок питания ATX 2003 года, а диоды — Lh5A05… так что, возможно, в оригиналах не было 50 В. Пожалуйста, помогите, если у вас есть техническое описание…

    Вставил плату и замерил напряжение на крышках: показалось правильным.Замерил вспомогательные 5В… все хорошо.

    Шаг 2

    Давайте займемся модом: первая фаза — очистка платы от нежелательных компонентов. Это подразумевает огромный риск снятия полезных компонентов, но упрощает схему, освобождает место на плате для новых деталей, необходимых для дополнительной функциональности: одним из таких примеров является резистор для измерения тока, который устанавливается на радиаторе в пространстве. пары диодов TO220:

    Вот чистая доска:

    Шаг 3

    После очистки я приступил к третьему шагу: подделке результатов.Итак, как указано в примере 78L12 + 3 Rs. Мне снова было любопытно посмотреть, как выглядит сигнал… плохой. Плохой сигнал, плохие новости. Был значительный шум, ниже 13 В. Итак, быстрое решение: добавление одного диода и конденсатора.

    Первый конденсатор, несколько десятков нФ, оказался слишком маленьким, когда сеть была подключена к микросхеме 2003 года, поэтому я откопал старый электролитический 4,7 мкФ… измеренный как 7,8 мкФ… хорошо, я куплю новый мультиметр позже. Теперь напряжение остается правильным, а крышка остается.

    Шаг 4

    Обратная связь… позвольте мне еще раз представить схему:

    Я перешел на резистор 2R2 с большей мощностью (точнее, HS25), я повторно использовал R40 и добавил потенциометр 50K, который пришел на замену R60. Котел был настроен на целевое значение подаваемого тока 1,7 А.

    Шаг 5

    Последний мод: защита от перенапряжения. Зачем? Помните воображаемую ситуацию, когда нагрузка на R или слишком велика? В этом случае выходное напряжение поднимется выше 16 В на фильтрующем элементе бывшей выходной линии 12 В.А вот выходной цоколь и диоды это нехорошо.
    Согласно ST, диоды STPR1020 рассчитаны на 200 В, поэтому они остались там, и я заменил оригинальный конденсатор на 16 В на конденсатор на 35 В. Таким образом, мы защищены от максимума 25 В, которого я ожидаю от источника питания.

    Защита будет использовать возможности мониторинга 2003 года. Для этого я планирую подавать часть выходного напряжения выше 12 В на вывод 6, заставляя его подниматься выше номинального значения и таким образом вызывая остановку питания.Давайте посмотрим на схему:

    При равном Rs защита сработает при 2x (12 В + 0,7) = 25,5 В. Это слишком много … Плюс нам нужно отслеживать эквивалентное сопротивление 6 кОм делителя напряжения, используемого для подделки 5 В и 3 В 3. Для пары 1k3 и 2k2 сигнал тревоги должен звучать при выходном напряжении около 24 В. Однако значение будет немного другим из-за тока, который будет идти на входы 2003 года и допусков резисторов. Прошу прощения за то, что у меня нет изображений с этого этапа мода, я был пойман в процессе и забыл сделать снимки.

    Проверка защиты

    Теперь давайте проверим это: мультиметр на усилителе последовательно с фиктивной нагрузкой 4R7, питание включено… и все прошло нормально. Новый блок питания выдает 1,7 А.
    Сработает ли защита? Проверьте это, отсоединив один из выводов мультиметра и… нет. Выходное напряжение достигает 29 В и остается на этом уровне. Что-то пошло не так … да, я пропустил внутреннюю выходную нагрузку 78L12:

    А теперь как исправить !? Методом проб и ошибок. Я вынул резистор 1 кОм, заменил его потенциометром 1 кОм, который я подключал не к выходному напряжению, а к лабораторному источнику питания.Процедура выглядит следующим образом: я запускаю модифицированный источник питания с нагрузкой 4R7, затем подключаю лабораторный источник питания к входу потенциометра и повышаю напряжение до тех пор, пока не сработает защита от перенапряжения; затем измените значение банка и перезапустите процедуру.

    После этого я настраивал значение потенциометра до тех пор, пока меня не устраивало напряжение, срабатывающее срабатывание защиты, затем я снял горшок, я измерил его значение, чтобы я мог заменить его некоторыми резисторами с фиксированным значением.

    Новый модифицированный компьютерный ИИП сейчас проходит испытание на перенапряжение.Вроде все работает.

    РАБОТА ВЫПОЛНЕНА !!

    Вот так выглядит модификация:

    DIY Импульсный источник постоянного тока — конец.

    Позднее редактирование: похоже, что Taiwan Semi производит диоды 2A05 с номиналом 2A при 600 В. Находятся ли оба модуля 3A05 и 4A05 в сегменте 600 В?
    Более позднее редактирование: также похоже, что Тайваньская компания Semi производит диоды 6A05 на 6 А при 50 В? Я сдаюсь. Если у кого-то есть таблица данных для 3A05, найденная в SMPS, поделитесь информацией.

    Превратите компьютерный блок питания в настольный блок питания

    [youtube https://www. youtube.com/watch?v=5TJaREOi1SY]

    Есть много способов перепрофилировать и повторно использовать старую электронику. Например, компьютерный блок питания может стать отличным настольным блоком питания для вашей мастерской. В Интернете уже есть много руководств, в которых показано, как преобразовать блок питания старого компьютера в настольный блок питания, но для большинства этих проектов требуется, чтобы вы постоянно его модифицировали.

    Такая конструкция внешнего адаптера позволяет использовать блок питания без его модификации. К адаптеру можно подключить любой блок питания ATX. В результате получился источник питания большой емкости, который может выдавать 3,3 В, 5 В, 12 В и -12 В.

    Прежде чем мы начнем, вот некоторая справочная информация о компьютерных блоках питания.

    Блок питания компьютера преобразует мощность переменного тока от настенной розетки в меньшее напряжение постоянного тока, которое питает различные компоненты компьютера.Он регулирует напряжения путем быстрого включения и отключения цепи нагрузки (импульсный источник питания). Большинство современных компьютерных блоков питания следуют соглашению ATX: они выдают + 3,3 В, + 5 В, + 12 В и -12 В по серии проводов с цветовой кодировкой.

    Блоки питания

    для компьютеров обладают рядом функций безопасности, которые помогают защитить вас и сам блок питания. Вот пара, о которой вам нужно знать:

    • Включение источника питания Он не включается, если он не подключен к материнской плате компьютера.Это контролируется зеленым проводом включения. Подключение этого провода к земле (любой черный провод) позволит включить питание.
    • Минимальные требования к нагрузке Многим источникам питания требуется минимальный ток нагрузки, чтобы оставаться включенными. Без этой нагрузки выходное напряжение может значительно отличаться от указанного напряжения или источник питания может отключиться. В компьютере ток, используемый материнской платой, достаточен для удовлетворения этих требований. Если ваш источник питания имеет минимальные требования к выходной мощности, вы можете удовлетворить это, подключив большой силовой резистор через выходные клеммы. Это обсуждается ниже.

    Настольный блок питания ATX с переменным напряжением: AskElectronics

    Все, что вы говорите, абсолютно верно, но, поскольку OP, кажется, новичок в электронике, мы должны упомянуть, что не все напряжения одинаково пригодны для использования. Когда вы используете понижающий преобразователь, особенно более дешевые модули (из Китая / eBay и т. Д.), Вам придется добавить какую-то фильтрацию на выходе; по крайней мере, я не видел ни одного модуля, который производил бы достаточно чистое напряжение, которое можно было бы использовать для настольного блока питания.И простое добавление огромной буквы C, вероятно, здесь не лучший вариант, поскольку многие вещи, которые можно было бы использовать с надлежащим стендовым блоком питания, не очень любят приводить в движение с большой емкостью на входе. Видите ли, проблема с ШИМ заключается в том, что пониженное напряжение, которое вы измеряете как, скажем, 2,5 В, на самом деле не 2,5 В, а вместо этого 5 В с так называемым рабочим циклом 50%. Это означает, что вы питаете свое устройство напряжением 5 В, которые быстро включаются в половине случаев и выключаются в половине случаев. Я настоятельно рекомендую изучить ШИМ и понять его; после этого следует заняться фильтрацией сигналов ШИМ.

    Для простых вещей, таких как светодиодные ленты (или практически любая резистивная нагрузка, на самом деле), напряжение ШИМ не представляет проблем, но когда ваше устройство представляет собой скорее индуктивную или емкостную нагрузку, вы можете увидеть какое-то странное поведение.

    Просто пример, с которым я столкнулся: я использовал Arduino (5 В) с беспроводным модулем nRF24L01 (3,3 В). Чтобы получить 3,3 В из 5 В, я использовал один из дешевых понижающих преобразователей. Предполагалось, что радиус действия беспроводных модулей составит около нескольких сотен метров на открытом воздухе; Получил около 10м.После некоторых исследований и проверки 3,3 В с помощью осциллографа я обнаружил, что напряжение было крайне «нечистым» с множеством очень коротких, но четко видимых всплесков величиной в несколько сотен мВ с частотой в несколько МГц.

    После замены модуля на хороший с множеством хорошей фильтрации я получил полный диапазон.

    Но, конечно, нельзя использовать для этого блок питания ATX; просто будьте осторожны со стороной сети и подумайте о фильтрации. 😉

    Распиновка блока питания ATX — схемы блока питания

    Блок питания ATX генерирует три основных выхода напряжения: +3.3 В; +5 В; и +12 В. Маломощные источники питания −12 В и +5 VSB (резервный) также генерируются этим источником питания. Выход -5 В был первоначально необходим, так как он подавался на шину ISA, однако он стал устаревшим с удалением шины ISA в современных ПК и был удален в более поздних версиях стандартного блока питания ATX.

    Изначально материнская плата питалась от одного 20-контактного разъема. Блок питания ATX имеет несколько разъемов для подключения периферийных устройств. В современной настольной компьютерной системе есть два разъема для материнской платы: 4-контактный вспомогательный разъем, обеспечивающий дополнительное питание ЦП, и основной 24-контактный разъем для источника питания, расширение оригинальной 20-контактной версии.

    Вот распиновка блока питания ATX:

    Есть 4 провода, которые имеют специальные функции:

    • PS_ON # или «Power On» — это сигнал от материнской платы к источнику питания. Когда линия подключена к GND (материнской платой), питание будет включено. Он внутренне подтягивается до +5 В. Внутри источника питания. Чтобы проверить автономный блок питания ATX, просто подключите провод PS_ON # (зеленый провод) к проводу заземления (черный).
    • PWR_OK или «Power Good» — это выходной сигнал источника питания, который указывает на то, что его выход стабилизирован и готов к использованию. Он остается низким в течение короткого времени (100–500 мс) после того, как сигнал PS_ON # перейдет в низкий уровень.
    • +3,3 В sense необходимо подключить к +3,3 В на материнской плате или ее разъему питания. Это соединение позволяет дистанционно определять падение напряжения в проводке источника питания.
    • +5 VSB или «+5 В в режиме ожидания» подает питание, даже если остальные линии питания отключены.Его можно использовать для питания схемы, которая управляет сигналом включения питания.

    Теги: Распиновка 20-контактного блока питания ATX Распиновка 24-контактного блока питания ATX Распиновка блока питания ATX Распиновка ATX PSU Распиновка блока питания ATX Распиновка блока питания компьютера Распиновка блока питания ПК

    с использованием LTC3780 и блока питания ATX для создания переменного лабораторного источника

    Я начал создавать лабораторный блок питания (фиксированное напряжение) из блока питания ATX, но недавно просмотрел несколько видеороликов о контроллере LTC3780 Buck Boost и теперь хочу создать регулируемый настольный блок питания .
    Я смотрел видео, чтобы добиться вариативности, но с использованием регулятора напряжения LM317.
    Я видел одно видео YT с использованием блока питания с LTC3780, но с сохранением ATX отдельно от корпуса вывода.
    Больше нечего делать, но я чувствую, что это потому, что LTC3780 — недавнее дополнение к миксу. У него отличная родословная, и он получает самые положительные отзывы от любителей DIY.
    Я бы отпаял потенциометры тока и напряжения и провода в 2-х корпусных потенциометрах.
    Также вставьте 2 индикатора напряжения / тока, если я выберу переменный и фиксированный выход.
    У меня есть 700-ваттный (240-вольтный) блок питания Thermaltake с очень маленьким корпусом (вероятно, слишком маленьким для размещения LTC 3780 и т. Д.).
    Это новый (и новый стиль) блок питания с напряжением + 5v, + 3.3v, + 12v1, + 12v2, -12v, + 5vsb, а также обычным — напряжением.
    12v1 имеет самый высокий ток при 30 ампер, второй 12v на 22 ампера, + 5vsb имеет 2,5 ампер, + 5v имеет 15A, плюс 3.3v имеет 24A
    Я заказал цельнометаллический корпус большего размера, в который предлагаю прикрепить корпус Thermaltake, LTC и все насадки.
    1 / возможен ли этот метод (с использованием LTC3780) достижения переменного выхода?
    Я буду использовать его для зарядки сбалансированной аккумуляторной батареи 7S4P 18650 среди многих других.
    2 / следует ли прикрутить или приклеить Thermaltake к новому корпусу (думая о заземлении)?
    3 / Использовать + 12v1 или + 12v2 для основного питания LTC3780?
    4 / Использовать + 5vsb подключенный к usb для зарядки 5v?
    5 / использовать неиспользуемый + 12В для фиксированного выхода 12В?
    6 / Блок питания имеет 23 x черных, 4 x + 12v2 и 7 x + 12v1 проводов; сколько черных я должен сгруппировать для земли LTC — это имеет значение?
    7 / используйте все 7 + 12v1 (30 ампер) для положительного LTC, если не сколько?
    В видеороликах You Tube есть много упоминаний об отрезании неиспользуемых проводов, но ни в одном из них не упоминается, что с ними делать и как их обрезать.Я предполагаю (глупо с моей стороны?) Каждый неиспользованный отрезанный провод должен быть изолирован либо изолентой, либо жидкой изолентой, затем объединен в ленту и спрятан в стороне. Любые советы будут высоко ценится.

    Новый корпус имеет пластиковую окантовку, изолирующую лицевую / заднюю часть от верхней / нижней / боковых сторон.
    8 / Следует ли соединять ремнями все поверхности?

    Приветствуются любые другие советы / комментарии — никакого троллинга.
    аплодисменты
    Майк

    Создайте свой собственный регулируемый SMPS на 5 В, 1 А, используя неисправный компьютер Блок питания ATX

    A S witch M ode P ower S Источник питания (SMPS) является неотъемлемой частью любого электронного оборудования. дизайн.Он используется для преобразования сетевого переменного тока высокого напряжения в постоянный ток низкого напряжения и делает это, сначала преобразуя переменный ток сети в постоянный ток высокого напряжения, а затем переключая постоянный ток высокого напряжения для генерации желаемого напряжения. Ранее мы уже сделали несколько схем SMPS, таких как эта схема SMPS 5V 2A и схема SMPS 12V 1A TNY268. Мы даже создали наш собственный трансформатор SMPS, который можно было бы использовать в наших проектах SMPS вместе с ИС драйвера.

    Вы можете этого не заметить, но для большинства бытовых товаров, таких как зарядное устройство для мобильного телефона, зарядное устройство для ноутбука, маршрутизаторы Wi-Fi, для работы требуется импульсный источник питания, и большинство из них рассчитаны на 5 В.Имея это в виду, в этой статье мы покажем вам, как построить схему SMPS 5 В, 1 А, утилизируя детали от старого одноразового блока питания ATX для ПК.

    Предупреждение : Работа с сетью переменного тока требует предварительных навыков и контроля. Не открывайте старый SMPS и не пытайтесь построить новый без опыта. Будьте осторожны с заряженными конденсаторами и проводами под напряжением. Вы были предупреждены, действуйте осторожно и всегда обращайтесь за помощью к специалистам.

    Рекомендации по проектированию источника питания 5 В, 1 А

    Прежде чем мы продолжим, давайте проясним некоторые основные особенности конструкции и защиты.

    Зачем строить схему SMPS из компьютерного блока питания?

    Для меня это дешево, опять же дешево — очень дорогое слово, буквально бесплатно. Вы спросите, как же так? Просто поговорите со своими местными сервисными центрами для ПК, они дадут вам его бесплатно, по крайней мере, так было со мной. Кроме того, спросите своих друзей, есть ли у них какие-нибудь сломанные.

    Изготовление / закупка трансформатора для схемы — самая важная часть любого проекта SMPS, но этот метод полностью избегает этого шага, спасая трансформатор, а также дает очень хороший опыт обучения, если вы такой электронный наркоман, как я.Мой блок питания ATX после утилизации необходимых деталей показан ниже.

    В этой конструкции вы можете добавить потенциометр и немного изменить выходное напряжение. это может пригодиться в некоторых случаях, и самое интересное в схеме состоит в том, что она сделана из очень общих деталей, поэтому, если что-то взорвется, найти и заменить их — очень простая задача.

    Цепи

    SMPS работают по-разному в разных условиях, если вы строите эту схему, зная, что фактическая характеристика ввода-вывода может помочь вам отладить схему, если вы обнаружите какие-либо проблемы с ней.

    Входное напряжение:

    Поскольку входное напряжение стандартного блока питания ПК составляет 220 В, наша резервная схема также работает на этом напряжении. Но с моей текущей настройкой таблицы я также попытаюсь управлять схемой с входным напряжением 85 В.

    Выходное напряжение:

    Выходное напряжение схемы составляет 5 В при номинальном токе 1 А, что означает, что эта схема может выдерживать мощность 5 Вт. Эта схема работает в режиме постоянного напряжения , поэтому выходное напряжение должно оставаться практически неизменным независимо от тока нагрузки.

    Пульсация на выходе:

    Трансформатор в этой схеме изготовлен профессиональным производителем, поэтому пульсации малы. Поскольку он построен на точечной доске, мы можем ожидать немного большей ряби, чем обычно.

    Элементы защиты:

    В общем, существует множество схем защиты SMPS конструкции , но наша схема сделана из старого блока питания ПК, поэтому мы можем добавлять или убирать функции защиты в соответствии с требованиями нашего окончательного приложения.Вы также можете проверить следующие схемы защиты, которые мы создали ранее.

    Я собираюсь использовать эту схему для питания своих проектов IoT. Поэтому я решил использовать минимальную функцию защиты, которая представляет собой плавкий резистор на входе и схему защиты от перенапряжения на выходе.

    Итак, чтобы подвести итог, сетевое напряжение переменного тока для нашего блока питания будет составлять 220 В переменного тока, выходное напряжение будет 5 В постоянного тока с 1 А максимального выходного тока. Мы постараемся сделать выходное пульсирующее напряжение как можно более низким, и у нас есть входной плавкий резистор со схемой защиты от перенапряжения на выходе.

    Компоненты, необходимые для цепи SMPS 5 В, 1 А

    Sl. №

    Детали

    Тип

    Кол-во

    Деталь на схеме

    1

    4,7R

    Резистор

    1

    R1

    2

    39R

    Резистор

    1

    R10

    3

    56R, 1 Вт

    Резистор

    1

    R9

    4

    100R

    Резистор

    2

    R7, R6

    5

    220R

    Резистор

    1

    R5

    6

    100 тыс.

    Резистор

    1

    R2

    7

    560 К, 1 Вт

    Резистор

    2

    R3, R4

    8

    1N4007

    Диод

    4

    D2, D3, D4, D5

    9

    UF4007

    Диод

    1

    D6

    10

    1N5819

    Диод

    1

    D1

    11

    1N4148

    Диод

    1

    D7

    12

    103,50 В

    Конденсатор

    C4

    13

    102, 1кВ

    Конденсатор

    2

    C3

    14

    10 мкФ, 400 В

    Конденсатор

    1

    C1

    15

    100 мкФ, 16 В

    Конденсатор

    1

    C6

    16

    470 мкФ

    Конденсатор

    2

    C7, C8

    17

    222пФ, 50 В

    Конденсатор

    1

    C5

    18

    3.3uH, 2.66A

    Индуктор

    1

    L2

    19

    2SC945

    Транзистор

    1

    Т1

    20

    C5353

    Транзистор

    1

    1 квартал

    21

    PC817

    Оптрон

    1

    ОК1

    22

    TL431CLP

    Опорное напряжение

    1

    VR1

    23

    10 000

    Обрезной горшок

    1

    R11

    24

    Винтовой зажим

    5 мм

    2

    С1, С2

    25

    1N5908

    Диод

    1

    D9

    26

    Трансформатор

    С ПК БП

    1

    TR1

    Схема SMPS 5 В, 1 А

    На изображении ниже показана схема блока питания SMPS 5 В, 1 А, который мы построим в этом руководстве.

    Я построил схему на макетной плате, и после завершения она выглядела вот так.

    Давайте разберемся в схеме, разбив ее на множество функциональных блоков, и давайте разберемся с каждым блоком.

    Плавкий резистор:

    Во-первых, у нас есть R1 , который служит двум целям. Во-первых, он действует как плавкий резистор . Во-вторых, он действует как токоограничивающий резистор .

    Мостовой выпрямитель и фильтр:

    Далее у нас есть диоды 1N4007, D2, D3, D4, D5 , четыре из которых образуют мостовой выпрямитель, а также конденсатор фильтра 10 мкФ для преобразования переменного тока в постоянный.

    Обратите внимание, что я удалил фильтр PI , потому что я не собираюсь использовать этот источник питания, кроме зарядки аккумулятора, если вы собираетесь использовать этот другой способ, фильтр EMI необходим, вы всегда можете вытащить его от того же блока питания.Если вы не уверены, что такое фильтр PI и как он работает, вы можете ознакомиться со связанной статьей. Вы также можете проверить другие конструкции для уменьшения электромагнитных помех в цепи SMPS, которые мы обсуждали ранее.

    Пусковые резисторы:

    R3 и R4 образуют пусковые резисторы , при подаче питания пусковые резисторы отвечают за питание базы первичного переключающего транзистора, я подробнее расскажу о резисторе позже в статье .

    Зажим ограничения напряжения коллектора:

    Для ограничения напряжения коллектора первичного переключающего транзистора Q1 C3, R2 и D6 образуют схему фиксации , и это очень хороший пример использования демпферной цепи для уменьшения пикового напряжения при выключении и глушить звонок . В большинстве случаев можно использовать очень простой метод проектирования для определения подходящих значений для компонентов демпфера (Rs и Cs).В тех случаях, когда требуется более оптимальный дизайн, используется несколько более сложная процедура.

    Первичный и вспомогательный переключающий транзистор:

    Транзистор Q1 , C5353 — главный переключающий транзистор и T1 — вспомогательный переключающий транзистор в схеме. C4 и R5 образуют первичный генератор, который генерирует основной сигнал переключения.

    Цепь обратной связи и управления:

    Оптопара PC817 OK1 вместе с опорным напряжением VR1 и диодом 4148 образует цепь обратной связи и управления , другой резистор, представленный в этой части, действует только как делитель напряжения, токоограничивающий резистор и фильтр. конденсатор.Помимо этого, я добавил потенциометр R11 для регулировки напряжения в соответствии с требованиями.

    Трансформатор, выходной выпрямитель и фильтр:

    Трансформатор T1 изготовлен из ферромагнитного материала, который не только преобразует переменный ток высокого напряжения в переменный ток низкого напряжения, но также обеспечивает гальваническую развязку. В трансформаторе имеется 4 обмотки. T1 Выводы 1, 2 и 3 — вторичная обмотка, вывод № 4, 5 — вспомогательная обмотка, вывод № 6 и 7 — первичная обмотка.

    Диоды D1 и D9 — это выпрямительные диоды для схемы. Конденсатор C8 отвечает за фильтрацию 12 В, а конденсаторы C6 и C7 вместе с L2 образуют PI-фильтр для выходной секции.

    Схема защиты от перенапряжения:

    Может быть добавлена ​​дополнительная схема защиты от перенапряжения для защиты вашего прикладного устройства от повреждения, это очень простая схема, состоящая из предохранителя и стабилитрона, как вы можете видеть выше. Если возникает состояние перенапряжения, стабилитрон взрывается, таким образом взорвав этим предохранитель Fast Blow Fuse .

    5V-1A SMPS Схема рабочая

    Теперь, когда все понятно, давайте разберемся, как работает схема. Когда питание подается на схему, переменный ток в сети выпрямляется и фильтруется выпрямительными диодами и конденсатором. После этого два пусковых резистора R3, R4 ограничивают ток до базы транзистора, поэтому первичный транзистор слегка включается, теперь небольшой ток течет через первичную обмотку трансформатора, который является выводом 6 и 7 транзистора. .

    Этот небольшой ток питает вспомогательную обмотку, эта вспомогательная обмотка начинает заряжать конденсатор C4 103 пФ через резистор R5 220 Ом. Напряжение на вспомогательной стороне снова подключается к коллектору оптопары с выпрямительным диодом 1N4148, это напряжение выходит из эмиттера оптопары и делится делителем напряжения. Теперь конденсатор C5 на 222PF начинает заряжаться. Когда этот конденсатор заряжается до определенного уровня, включается вспомогательный транзистор T1, первичный транзистор выключается, а конденсатор C5 разряжается

    И цикл начинает повторяться еще раз, таким образом генерируется сигнал переключения.После того, как переключение начала процесса, то напряжение становится индуцированными на вторичной обмотке трансформатора из вторичного контура обратной связи производится с помощью VR1 опорного напряжения TL431, путем регулировки опорного напряжения, можно установить включение и выключение времени вспомогательного транзистора, таким образом, мы можем контролировать выходное напряжение.

    Построение цепи SMPS

    Для этой демонстрации схема построена на пунктирной плате с помощью схемы; Обратите внимание, что я тестирую схему на своем стенде для демонстрации, поэтому я не включил многие функции защиты, такие как защита от перенапряжения и защита от короткого замыкания.Если вы используете это для питания чего-то еще, рекомендуется включить эти схемы защиты и фильтрации.

    Вышеупомянутая испытательная установка использовалась для проверки схемы, выходное напряжение источника питания было отрегулировано до 5,1 В с помощью потенциометра, и это источник питания 1 А, поэтому он может потреблять ток 1 А в пиковом состоянии.

    Как вы можете видеть на изображении выше, для тестирования с нагрузкой я использовал несколько резисторов в качестве нагрузки, которая потребляла около 1,157 А от нашей схемы SMPS при 5 В.Полное видео тестирования можно найти внизу этой статьи.

    Усовершенствования схемы ИИП 5В-1А

    Есть несколько вещей, которые можно улучшить в этой схеме, например, фильтр EMI может быть добавлен на входе для улучшения отклика EMI этой схемы. Затем можно добавить защиту от перегрузки по току и короткого замыкания на выходе, чтобы улучшить общие характеристики схемы. Кроме того, можно добавить защиту от перенапряжения и перенапряжения на входе для защиты от перенапряжения на входе.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *