Ампер си: физический смысл одного ампера, в чем измеряется?

Содержание

Ампер единица измерения — Справочник химика 21





    Магнитодвижущая (намагничивающая) сила Р — величина, которая характеризует намагничивающее действие электрического тока. Если магнитный контур замкнут, то магнитодвижущая сила (МДС) равна Р = Ш, т.е. произведению тока I в обмотке на ее число витков (рис. 1.27). Единица измерения МДС — ампер-виток. [c.248]

    Международная система (СИ) включает шесть основных единиц измерения длины — метр, массы — килограмм, времени — секунда, температуры — градус Кельвина, силы электрического тока — ампер и силы света — свеча. Кроме того, в эту систему входят две дополнительные единицы (плоского угла — радиан и телесного угла — стерадиан) и 27 важнейших производных. [c.5]








    Практической единицей измерения электрического тока является ампер (А) — основная единица в системе СИ (см. приложение в конце книги). Практической единицей электрического заряда является ампер-секунда (А-с), или кулон (Кл). Если расчеты проводятся в системе СИ, то закон Кулона записывается в форме [c.183]

    Амперометрическое титрование. Предельный диффузионный ток можно использовать для нахождения точки стехиометричности при проведении титрований. Единица измерения тока — ампер, поэтому такой способ титриметрического анализа называют амперометрическим титрованием. [c.286]

    Единицей измерения силы тока служит ампер (1 А = 1 Кл/с). Ток в сплощной среде удобнее характеризовать его плотностью I — количеством электричества, перемещаемого за единицу времени через единицу площади, ориентированной перпендикулярно к направлению тока в проводящей среде (размерность — А/ м ). [c.654]

    Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая бц и магнитная Хо постоянные принимаются равными  [c.21]

    Для дифференциальных детекторов при записи сигнала на диаграммную ленту самопишущего прибора выходкой сигнале получается в виде пиков, причем этот сигнал определяется высотой пика, его площадью или произведением объема удерживания на высоту пика. Выходной сигнал детектора лучше всего выражать в единицах измерения, характерных для физического явления, происходящего в детекторе. Например, если измеряется высота пика, то для катарометра выходной сигнал обычно выражается в. милливольтах, а для ионизационных детекторов — в амперах. [c.83]








    Х/3/2 2 единицы измерения 1 В = 1 кг м /(с -А) = =1 Дж/(А с) =1 Вт/А. ] Единица измерения электрического потенциала, вольт, есть разность потенциалов между двумя точками проводящей проволоки, по которой проходит ток 1 ампер, когда мощность, рассеиваемая на участке между этими точками, составляет 1 ватт. Знак э. д. с. определяется в соответствии с правилом, согласно которому положительный заряд должен двигаться от большего потенциала к меньшему. Э. д. с. гальванического элемента — это разность электрических потенциалов между двумя кусками металла одного и того же состава, представляющих собой концы цепи проводящих фаз. Например, в элементе Даниэля (см.) [c.228]

    Если в стакан, содержащий раствор электролита, поместить два платиновых электрода и присоединить их к источнику электричества, то через раствор потечет ток. Сила его определяется как приложенным напряжением Е, так и сопротивлением Я той части раствора, которая заключена между электродами. Это отношение математически выражается законом Ома 1=Е1Я, где / —сила тока в амперах, —напряжение в вольтах и сопротивление в омах. Электропроводность Ь определяется как величина, обратная сопротивлению, так что 1 — Е1. Единицей измерения электропроводности является обратный ом ом или л[c.12]

    В качестве основных единиц измерения физических величин в Международной системе единиц приняты метр, килограмм, секунда, ампер, кельвин, кан-дела. Предусмотрены также две дополнительные единицы — радиан и стерадиан. Для различных областей измерений рекомендуются производные единицы СИ. Ниже перечислены основные производные единицы измерения СИ (механические, тепловые, электрические), с которыми приходится наиболее часто оперировать и в химической технологии  [c.450]

    Сущность метода. Э. д. с. гальванического элемента определяется непосредственно чувствительными измерительными приборами, последовательно с которыми включается большое и точно известное сопротивление. При включении измерительного прибора в сеть гальванического элемента необходимо, чтобы внешнее сопротивление сети было во много раз больше внутреннего. Тогда о напряжении между электродами элемента можно будет судить по силе тока. Подобная схема позволяет по изменению последней в цепи определять изменения э. д. с. испытуемого гальванического элемента. Шкала чувствительности прибора может быть отградуирована в милливольтах—милливольтметры в амперах — гальванометры в единицах измерения анализа, например в значениях pH, т. е. эти измерительные приборы выступают в роли индикаторов. [c.445]

    Сравним мысленно прохождение электрического тока по проволоке с точением воды в трубке. Количество воды измеряется в литрах или кубических метрах количество электричества обычно измеряют в кулонах или эл.ст.ед. Скорость течения или поток воДы, т.е. количество ее, проходящее в данной точке трубки в единицу времени, измеряют в литрах в секунду или в кубических метрах в секунду силу электрического тока измеряют в амперах (кулонах в секунду) или в эл.ст.ед. в секунду. Скорость движения воды в трубке зависит от разности давления на концах трубки это давление выражается в килограммах на квадратны11 сантиметр. Сила электрического тока в проволоке зависит от электрической разности давления или от разности потенциалов (падения напряжения) между концами проволоки, обычно измеряемой в вольтах или эл.ст.ед. Единица измерения количества электричества (кулон) и единица измерения электрического потенциала (вольт) были приняты произвольно но международному соглашению. [c.57]

    Электрические единицы измерения (метр—килограмм—секунда—ампер) стандартизованы системой МКСА (ГОСТ 8033—56). [c.10]

    Основной стандартной единицей измерения электрических величин является ампер (а), служащий для выражения силы тока. [c.23]

    Основная единица измерения электрического напряжения — вольт (е). Вольт — это электрическое напряжение на концах проводника с сопротивлением в один ом, вызывающее протекание по нему тока величиной, равной одному амперу. Э. д. с. и напряжение измеряют в вольтах. В вольтах измеряют напряжение генераторов постоянного тока, возбудителей, питающей сети переменного тока, напряжение нз гальванических ваннах, выпрямителях в гальванотехнике (на шунтах) напряжение измеряют также и в милливольтах (1 б = 1000 мв). Напряжение измеряют вольтметром. Вольтметр включают в электрическую цепь параллельно нагрузке. [c.17]

    Единицей измерения силы электрического тока служит ампер (а) это такая сила тока, при которой через поперечное сечение проводника за каждую секунду проходит количество электричества, равное одному кулону. [c.172]

    Единицы измерения. Единица силы тока называется ампером. [c.5]

    Международная система СИ имеет шесть основных единиц измерения и две дополнительные. Основными являются единица длины—метр м), единица массы—килограмм кг), единица времени—секунда сек), единица температуры—градус Кельвина (°К), единица силы тока—ампер (а) и единица силы света—свеча (се). Дополнительными являются единица плоского угла— радиан рад), единица телесного угла—стерадиан стер). [c.733]

    Единицы измерения ампер и градус Кельвина названы в честь выдающихся ученых французского физика и математика, основателя электродинамики А. М. Ампера (177 —1835) и английского физика, установившего абсолютную шкалу температур. Кельвина (У. Томсона) (1824— 1907). [c.544]

    Счетчики ампер-часов. Поскольку ампер-час служит единицей измерения емкости аккумуляторных батарей, счетчики ампер-часов являются удобным инструментом для контроля заряженности батареи и управления зарядом. [c.314]

    Основной электрической единицей в Международной системе единиц (СИ) является ампер (а) — сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1. и один от другого в вакууме, вызывал бы между этими проводниками силу, равную 2-10 н (1а = 0,1 абс. эл. ед.). Ампер одновременно является практической единицей измерения силы тока. [c.364]

    В настоящее время в большинстве стран мира принята международная система единиц СИ, в которой основными единицами измерения являются метр, килограмм (массы), секунда, ампер, моль. Наряду с СИ иногда используется стандартная метрическая система СГС (сантиметр, грамм, секунда). [c.10]

    Обозначения единиц, происходящих от имен собственных, начинаются с прописной буквы. Например, А — ампер, К — кельвин, Дж — джоуль. Единицы измерения, выражающие произведение двух других единиц, представляют знаком умножения, например Н м, Дж с. Единицы измерения, как частное от деления двух другах единиц, могут быть представлены любым из способов м/с, [c.6]

    Установление количественных соотношений в стехиометрии производится на основе понятия моль. В Международной системе единиц (СИ) моль является единицей измерения количества веш ества и относится к числу семи основных единиц этой системы. Другие основные единицы СИ метр — м, килограмм — кг, секунда — с, ампер — А, кельвин — К и кандела — кд. [c.11]

    Единицей измерения силы тока является ампер (а). 1 а — это ток, который переносит 1 кулон электричества за 1 сек. При прохождении через раствор нитрата серебра тока силой 1 а из раствора выделяется 1,1180 мг серебра в 1 сек. [c.199]

    Точно так же законы Фарадея применимы в случае анодного осаждения или растворения. Они были проверены для многочисленных реакций при высоких и низких температурах в различных растворителях и ионных расплавах. Как было сказано выше, эти законы используются для определения важной электрической единицы измерения — ампера. [c.202]

    Емкость. Разрядной емкостью С называют количество электричества, которое источник тока отдает при заданном режиме разряда до достижения заданного конечного напряжения i/. Единицей измерения емкости ХИТ согласно ГОСТ 4.362—85 является ампер-час. [c.50]

    Вниманию студентов. С 1 января 1963 г. в СССР введена Международная система единиц измерения (СИ), состоящая из шести основных единиц метр (м) — длина, килограмм (кг) — масса, секунда (с) — время, ампер (А) — сила тока, кельвин (К) — термодинамическая температура, кандела (кд) — сила света. XIV Генеральная конференция по мерам и весам (1971 г.) утвердила единицу количества вещества моль (моль) в качестве седьмой основной единицы Международной системы Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде — 12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц . Моль вещества соответствует числу Авогадро Л а= (6,022045 0,000031) X10 моль структурных элементов. При применении понятия моль следует указывать, какие структурные элементы имеются в виду. Например, моль атомов Н, моль молекул Нг, моль протонов, моль электронов и т. п. Так, заряд моля электронов равен [c.5]

    Абсолютная симметричная система электрических и магнитных единиц измерения (система Гаусса) возникла в результате объединения абсолютной электростатической системы СГСЭ и абсолютной электромагнитной системы СГСМ, В первой из них, основанной на законе электростатического взаимодействия электрических зарядов (закон Кулона), электрическая постоянная принята равной единице. Во второй, основанной на законе электродинамического взаимодействия токов (закон Ампера), магнитная постоянная принята равной единице. В связи с этим в системе СГС электрические единицы соответствуют электрическим единицам системы СГСЭ, а магнитные единицы — магнитным единицам системы СГСМ. [c.591]

    Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (к) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сег массе 1 кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице. [c.9]

    В качестве основной системы единиц измерения в учебнике принята Международная система единиц СИ. Она построена на шести основных единицах и двух дополнительных. Три нервые основные единицы (метр, килограмм, секунда) позволяют образовать производные единицы для всех механических величин. Другие три основные единицы (ампер, градус Кельвина, свеча) дают возможность образовать производные электрические, магнитные, тепловые и световые единицы. К дополнительным единицам относятся радиан и стерадиан. [c.6]

    Приведем некоторые сведения относительно современного состояния вопроса об установлении единиц измерения энергии и теплоты. До настоящего времени в практике измерения физических величин используют несколько систем единиц. Последним ГОСТом [2] для измерения механических единиц допускается применение трех систем единиц системы МКС (метр, килограмм, секунда), системы СГС (сантиметр, грамм, секунда) и системы МКГСС (метр, килограмм-сила, секунда). Однако в этом ГОСТе указано, что преимущественно должна применяться система МКС. Кроме того, в соответствии с решениями X и XI Генеральных/конференций по мерам и весам (1954 и 1960 гг.) в СССР утвержден ГОСТ [3] Международная система единиц . Этот стандарт устанавливает как предпочтительную во всех областях науки, техники и народного хозяйства Международную систему единиц, основными единицами которой являются метр, килограмм, секунда, ампер, градус Кельвина и свеча. Международная система единиц является, следовательно, системой МКС, дополненной еще тремя основными единицами — ампер, градус Кельвина и свеча. Таким образом, в настоящее время могут встретиться случаи использования 4-х систем единиц измерения физических величин МКС, СГС, МКГСС и Международной системы единиц.[c.179]

    Как мы уже упоминали, Канниццаро в Кратком очерке курса химической философии после исторического введения, занимающего четыре первых лекции, говорит, что в пятой лекции он начинает применять гипотезу Авогадро и Ампера к определению весов молекул также и в том случае, когда их состав остается еще неизвестным. Из изложения Фарадеевской речи Канниццаро видно, какое значение он придавал как можно более раннему знакомству студентов с единицами измерения. Так, и в Sunto Канниццаро сразу же переходит к единице молекулярного веса, в качестве которой отдает предпочтение весу полумолекулы водорода перед весом целой молекулы. Таким образом, я отношу плотность различных воздухообразных тел к плотности водорода, принятой равной двум [82, стр. 7]. Канниццаро далее показывает, как проводить пересчет плотностей по воздуху на плотность по водороду. Подобные вычислительно-технические разделы Sunto , имевшие, конечно, значение для читателей того времени, мы будем опускать без упоминания, но первую таблицу [82, стр. 87] мы приведем полностью, потому что она прекрасно иллюстрирует эту работу [c.96]

    Единицы работы и мощности. Механическая работа выражается в килограмметрах (расстояние, умноженное на силу), кубометр-атмосферах (произведение рУ), литр-атмосферах и других подобных единицах, которые еще не упоминались выше. Механическая мощность будет выражаться в единицах работы, деленной на время, или в килограмметрах в минуту, литр-атмосферах в час и т. д. Лошадиная сила произвольно определяется равной 75 кгм/час. Поскольку сила, умноженная на время, равна работе, работа часто выражается в единицах мощность—время, например лошадиная сила-час. Электрическая работа будет выражаться в вольт-кулонах (называемых также джоулями ) или вольт-эквивалентах (эквивалент основан на электрохимических законах Фарадея и равен числу кулонов, отвечающих 1 грамм-эквиваленту иона), а мощность — в вольт-кулонах в секунду или вольт-амперах, обычно называемых ваттами . Аналогично механической работе электрическая работа может также выражаться в ватт-часах и других подобных единицах. В табл. II Приложения даются переводные коэфициенты для различных единиц энергии ). Эквиваленты мощности будут такими же, за исключением различных единиц измерения, которые могут быть использованы в различных случаях. [c.68]

    Величина L носит название коэфициента самоиндукции последний зависит от расположения проводника. Проводник обладает самоиндукцией, равной 1 генри, если на его концах при равномерном изменении тока в 1 А/сек возбуждается электродвижущая сила, равная 1 вольту, или если ток в 1 ампер в окружающем проводник пространстве вызывает поток, равный 1 Vs. Единицы измеренил и размерности см. табл. 1, стр. 708. Величина коэфициента самоиндукции. Соленоид  [c.730]

    Состоявшаяся в октябре 1960 г. в Париже XI Генеральная конференция по мерам и весам приняла Международную систему единиц (51, русское обозначение СИ — система интернациональная), в основу которой положены шесть единиц (измерение длины, массы, времени, силы зямстрического тока, термодинамической температуры и силы света) метр, килограмм, секунда, градус Кельвина , ампер и свеча.[c.544]

    В качестве основной системы единиц для измерения в различных областях удобно применить систему МКС с основными единицами длины — метр (м), массы — килограмм (кг) и времени— секунда (сек) в необходимых случаях добавляется четвертая основная единица градус Кельвина (°К)—при тепловых измерениях (система МКСГ), ампер (а)—при электрических и магнитных измерениях (система МКСА) и свеча (св)—при световых измерениях (система МКС). Эти системы входят как составные части в новую Международную систему единиц (СИ), утвержденную в 1960 г. XI Генеральной конференцией по мерам и весам [28—30]. [c.24]


Магнитное поле — МАГНИТ СТАНДАРТ

Как известно, появление магнитных взаимодействий происходит за счет движения заряженных частиц. Стационарные магнитные поля возникают вокруг проводников с постоянным электрическим током.

В зависимости от направления, по которому движутся заряженные частицы, два проводника, расположенные в непосредственной близости, могут взаимно отталкиваться или притягиваться. Это обуславливается силами, которые создают возникающие магнитные поля.

Основные характеристики магнитного поля, используемые в системах СИ и СГС

Магнитное поле имеет следующие основные характеристики:

  • Напряженность (H). Для измерения значения этой векторной величины в международной системе СИ используются амперы на метр (А/м). В системе «Сантиметр-Грамм-Секунда» для этого применяются Эрстеды (Э). Взаимосвязь выглядит следующим образом: 1 А/м = 4π/103 Э. 1 А/м ≈ 0,0125663 Э.
  • Индукция (B). Для измерения значения этой векторной величины в международной системе СИ используются Теслы (Тл). В системе «Сантиметр-Грамм-Секунда» для этого применяются Гауссы (Гс). Взаимосвязь выглядит следующим образом: 1 Тл = 10000 Гс.

Магнитная индукция в системе «Сантиметр-Грамм-Секунда»

В системе СГС связь индукции и напряженности в присутствии магнитного материала определяется следующим соотношением:

B=H+4πI

В этой формуле I — магнитный момент единицы объема материала (намагниченность). В системе СГС для измерения этой величины используются Гауссы (Гс).

Индукция характеризует поле, возникающее в веществе. Напряженность определяет параметры внешних магнитных полей и магнитных полей в вакууме. Величина B также может использоваться для внешних магнитных полей.

В вакууме значения индукции и напряженности равны (по системе СГС).

Магнитная индукция в международной системе СИ

В системе СИ используется следующее соотношение:

B=µ0(H+I)

В этой формуле µ0 — магнитная проницаемость вакуума. µ0 = 4π*10-7 Гн/м.

Векторы индукции, намагниченности и напряженности

На рисунке 1 показаны векторы намагниченности, индукции и напряженности в постоянном магните при отсутствии внешнего поля.

Рисунок 1 — Намагниченность, индукция и напряженность в постоянном магните.

Напряженность — это поле, создаваемое самим магнитом. Вектор H направлен противоположно вектору I. Напряженность иначе называется размагничивающим полем.

Таблица характеристик магнитного поля

Характеристика СИ СГС Связь между СИ и СГС Напряженность (Н) А/м (ампер на метр) Э (Эрстед) 1 А/м = 4π/1000 Э 1 А/м ≈ 0,0125663 Э 1 Э ≈ 79,57 А/м Магнитный поток (Ф) Вб (Вебер) Гс*см2 (Максвелл) 1 Вб = 100000000 Гс*см2 Индукция (В) Тл (Тесла) Гс (Гаусс) 1 Т = 10000 Гс 1 Гс = 0,0001 Т Намагниченность (I) А/м (ампер на метр) Гс (Гаусс) 1 А/м = 0,001 Гс 1 Гс = 1000 А/м

Магнитный диполь

На рисунке 2 представлены силовые линии магнитного поля, которые создают магнитные диполи (рамки с током).

Рисунок 2 — Силовые линии магнитного диполя.

Постоянный магнит можно также рассматривать как рамку с током. Создаваемые в окружающем пространстве силовые линии идентичны.

Основные единицы системы СИ — Тихоокеанский государственный университет

Метрическая система — это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

Эталоны длины и массы, международные прототипы. Международные прототипы эталонов длины и массы — метра и килограмма — были переданы на хранение Международному бюро мер и весов, расположенному в Севре — пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45°, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международная система СИ. Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости — метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт — это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.

Метр — это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды.

Килограмм равен массе международного прототипа килограмма.

Секунда — продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.

Радиан — плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Таблица 1. Основные единицы СИ
Величина Единица Обозначение
Наименование русское международное
Длина метр м m
Масса килограмм кг kg
Время секунда с s
Сила электрического тока ампер А A
Термодинамическая температура кельвин К K
Сила света кандела кд cd
Количество вещества моль моль mol
Дополнительные единицы СИ
Величина Единица Обозначение
Наименование русское международное
Плоский угол радиан рад rad
Телесный угол стерадиан ср sr
Таблица 2. Производные единицы СИ, имеющие собственные наименования
Величина Единица

Выражение производной единицы

Наименование Обозначение через другие единицы СИ через основные и дополнительные единицы СИ
Частота герц Гц с-1
Сила ньютон Н м кг с-2
Давление паскаль Па Н/м2 м-1 кг с-2
Энергия, работа, количество теплоты  джоуль Дж Н м  мкг с-2 
Мощность, поток энергии  ватт   Вт  Дж/с мкг с-3 
Количество электричества, электрический заряд  кулон  Кл   А с с А 
Электрическое напряжение, электрическийпотенциал  вольт  В  Вт/А  мкгс-3 А-1 
Электрическая емкость  фарада  Ф   Кл/В м-2 кг-1 сА2 
Электрическое сопротивление  ом  Ом  В/А  мкг с-3 А-2 
Электрическая проводимость   сименс  См  А/В м-2 кг-1 с3 А2 
Поток магнитной индукции  вебер  Вб   В с м2 кг с-2 А-1 
Магнитная индукция  тесла   Т, Тл Вб/м2  кг с-2 А-1 
Индуктивность  генри  Г, Гн   Вб/А м2 кг с-2 А-2 
Световой поток  люмен   лм   кд ср 
Освещенность  люкс  лк    м2 кд ср 
Активность радиоактивного источника  беккерель  Бк  с-1   с-1
Поглощенная доза излучения  грэй  Гр  Дж/кг   м2 с-2

Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.

Таблица 3. Приставки и множители десятичных кратных и дольных единиц международной системы СИ
 экса  Э  1018  деци  д 10-1 
 пета  П  1015  санти  с  10-2
 тера  Т  1012  милли  м  10-3
 гига  Г  109 микро   мк  10-6
 мега  М  106 нано   н  10-9
 кило  к  103 пико   п  10-12
 гекто  г  102 фемто   ф  10-15
 дека  да  101 атто   а  10-18

Таким образом, километр (км) — это 1000 м, а миллиметр — 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)

Масса, длина и время. Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1 10-8. Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.

Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной (1 10-9). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился.

Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1 10-12 — гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина — частота — уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир.

Механика. Исходя из единиц длины, массы и времени, можно вывести все единицы, применяемые в механике, как было показано выше. Если основными единицами являются метр, килограмм и секунда, то система называется системой единиц МКС; если — сантиметр, грамм и секунда, то — системой единиц СГС. Единица силы в системе СГС называется диной, а единица работы — эргом. Некоторые единицы получают особые названия, когда они используются в особых разделах науки. Например, при измерении напряженности гравитационного поля единица ускорения в системе СГС называется галом. Имеется ряд единиц с особыми названиями, не входящих ни в одну из указанных систем единиц. Бар, единица давления, применявшаяся ранее в метеорологии, равен 1 000 000 дин/см2. Лошадиная сила, устаревшая единица мощности, все еще применяемая в британской технической системе единиц, а также в России, равна приблизительно 746 Вт.

Температура и теплота. Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.

Термодинамическая шкала температуры. Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T/T1 = -Q2Q1, где Q2 и Q1 — количества теплоты, передаваемые каждому из резервуаров (знак <минус> говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем. Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT, где P — давление, V — объем и R — газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.

Международная температурная шкала. В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.

Существуют две международные температурные шкалы — Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.

Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.

Температурная шкала Фаренгейта. Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам — температуре таяния льда (32° F) и кипения воды (212° F) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.

Единицы теплоты. Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории — <термохимическая> (4,1840 Дж) и <паровая> (4,1868 Дж). <Калория>, которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.

Электричество и магнетизм. Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ. Ниже дается перечень электрических и магнитных единиц системы СИ.

Ампер, единица силы электрического тока, — одна из шести основных единиц системы СИ. Ампер — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 107 Н.

Вольт, единица разности потенциалов и электродвижущей силы. Вольт — электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества (электрического заряда). Кулон — количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

Фарада, единица электрической емкости. Фарада — емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока. Вебер — магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

Тесла, единица магнитной индукции. Тесла — магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м2, перпендикулярную линиям индукции, равен 1 Вб.

Практические эталоны. На практике величина ампера воспроизводится путем фактического измерения силы взаимодействия витков провода, несущих ток. Поскольку электрический ток есть процесс, протекающий во времени, эталон тока невозможно сохранять. Точно так же величину вольта невозможно фиксировать в прямом соответствии с его определением, так как трудно воспроизвести с необходимой точностью механическими средствами ватт (единицу мощности). Поэтому вольт на практике воспроизводится с помощью группы нормальных элементов. В США с 1 июля 1972 законодательством принято определение вольта, основанное на эффекте Джозефсона на переменном токе (частота переменного тока между двумя сверхпроводящими пластинами пропорциональна внешнему напряжению).

Свет и освещенность. Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м2, а интенсивность световой волны — в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540 1012 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

Рентгеновское и гамма-излучение, радиоактивность. Рентген (Р) — это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.

Кюри (Ки) — устаревшая единица активности нуклида в радиоактивном источнике. Кюри равен активности радиоактивного вещества (препарата), в котором за 1 с происходит 3,700 1010 актов распада. В системе СИ единицей активности изотопа является беккерель, равный активности нуклида в радиоактивном источнике, в котором за время 1 с происходит один акт распада. Эталоны радиоактивности получают, измеряя периоды полураспада малых количеств радиоактивных материалов. Затем по таким эталонам градуируют и поверяют ионизационные камеры, счетчики Гейгера, сцинтилляционные счетчики и другие приборы для регистрации проникающих излучений.

Переопределение Международной системы единиц измерения

Мы используем измерения с незапамятных времен. Сегодня, научное сообщество во всем мире вносит глобальные изменения в способы измерения вещей, пересматривает понятия «килограмм», «кельвин», «ампер» и «моль» – четыре из семи единиц Международной системы единиц измерения (СИ). Ряд стандартов ИСО и МЭК играют важную роль в решении поставленных задач.

Знаете ли Вы, что скромный килограмм до сих пор определялся объектом, который весит один килограмм? А измерение температуры по-кельвину основано на свойствах воды? Несмотря на то, что данный механизм работал веками, ведущие мировые ученые обнаружили, что с течением времени данные эталоны не были на 100% неизменными. Таким образом, сегодня ученые официально признали, что все единицы измерения будут определяться природными константами реже, чем физическими объектами, что стало крупнейшим изменением в международной системе измерения с 1875 года.

Определения содержатся в «библии научного сообщества», брошюре СИ, опубликованной Международным бюро мер и весов (BIPM), в которой также упоминается серия стандартов ИСО и IEC 80000, Величины и единицы. В серии стандартов содержатся согласованные на международном уровне понятия, определения и символы, используемые в науке и технике, а также в соответствующих подразделениях, что формирует единый язык и снижает риск возникновения ошибок.

Сегодня на Генеральной конференции по мерам и весам (CGPM), проводимой в Версале (Франция), ученые из более чем 60 стран собрались для пересмотра системы СИ.

Кроме того, во время конференции Серхио Мухика (Sergio Mujica), Генеральный секретарь ООН, подписал обновленную совместную декларацию по метрологическому обеспечению в целях продолжения взаимодействия ИСО с BIPM, OIML (Международная организация законодательной метрологии) и ILAC (Международная организация по аккредитации лабораторий). В заявлении говорится, что международная согласованность и сопоставимость могут быть гарантированы только в том случае, если метрологические измерения будут прослеживаться по аналогии со всемирно признанными источниками, и таким образом они станут фундаментальными для всех четырех организаций.

Комментируя четырехдневную конференцию, г-н Мухика отметил, что решение о пересмотре четырех из семи базовых единиц СИ было историческим событием. «Внедрение стандартизированных единиц измерения является основой глобальной экономики и имеет влияние на все аспекты науки и техники, – говорит Серхио Мухика. – «Переопределение означает, что нам больше не придется полагаться на физические объекты для повышения точности измерений. Изменение механизма измерения будет иметь огромное влияние на мир, ускоряя инновации и сокращая затраты на технологическое развитие. Таким образом наука об измерениях будет адаптироваться к нуждам будущих поколений.

Серия стандартов ИСО и IEC 80000 является основой для международной гармонизации терминов, определений и символов величин и единиц, используемых в науке и технике, что формирует единый язык и написание формул. Таким образом снижается вероятность ошибки и облегчается общение между учеными и инженерами множества дисциплин.

Брошюра СИ состоит из 13 различных частей, в которых представлены 11 частей из ИСО и две части из МЭК. Она содержит термины, определения, рекомендуемые символы, единицы и другую важную информацию, которая относится к измерениям, используемым в науке, технике, метрологии и промышленности. Документ также содержит ссылки на авторов технических документов, учебников, стандартов и руководств.

В течение последних нескольких лет пересмотр серии ISO 80000 происходит одновременно с пересмотром брошюры СИ и, как ожидается, будет завершен в начале 2019 года.

Серию стандартов ИСО и IEC 80000 можно приобрести у Вашего национального члена ИСО или в интернет-магазине ИСО.

Узнайте больше об осуществленных переопределениях Международной системы измерений в данном видео.

 

Международная система единиц (СИ)

Наименование величин Единица измерения
Наименование Обозначение
Основные величины
Длина метр м
Масса килограмм кг
Время секунда с
Сила электрического тока ампер А
Термодинамическая температура градус Кельвина К
Сила света кандела кд
Количество вещества моль моль
Важнейшие производные величины
Площадь квадратный метр м²
Объем кубический метр м³
Частота герц Гц
Плотность килограмм на кубический метр кг/м³
Скорость метр в секунду м/с
Угловая скорость радиан в секунду рад/с
Ускорение метр на секунду в квадрате м/с²
Сила ньютон Н
Давление (механическое напряжение) паскаль Па
Динамическая вязкость паскаль-секунда Па×с
Кинематическая вязкость квадратный метр в секунду м²/с
Работа, энергия, количество теплоты джоуль Дж
Теплоемкость системы джоуль на кельвин Дж/К
Удельная теплоемкость джоуль на килограмм-кельвин Дж/(кг×К)
Коэффициент теплообмена (теплоотдачи, теплопередачи) ватт на квадратный метр-кельвин Вт/(м²×К)
Теплопроводность ватт на метр-кельвин Вт/(м×К)
Мощность, поток энергии ватт Вт
Электрическое напряжение, разность электрических потенциалов, электродвижущая сила вольт В
Электрическое сопротивление ом Ом
Световой поток люмен лм
Яркость кандела на квадратный метр кд/м²
Освещенность люкс лк
Важнейшие внесистемные тепловые единицы
Количество теплоты калория кал
Термодинамический потенциал килокалория ккал
Удельная теплота калория на грамм кал/г
Удельный термодинамический потенциал килокалория на килограмм ккал/кг
Теплоемкость системы калория на градус Цельсия кал/°С
килокалория на градус Цельсия ккал/°С
Удельная теплоемкость калория на грамм-градус Цельсия кал/(г×°С)
Коэффициент теплообмена (коэффициент теплоотдачи) калория на квадратный сантиметр-секунду-градус Цельсия кал/(см²×с×°С)
Коэффициент теплопередачи килокалория на квадратный метр-час-градус Цельсия ккал/(м²×ч×°С)
Теплота сгорания килокалория на кубический метр ккал/м³

Международная система единиц СИ окончательно перестала опираться на материальные эталоны — Наука

МОСКВА, 20 мая. /ТАСС/. Принципы расчета эталонных значений килограмма, ампера, кельвина и моля Международной системы СИ меняются во Всемирный день метрологии, который отмечается 20 мая. Новые определения были утверждены в ноябре 2018 года в Версале на 26-й Генеральной конференции по мерам и весам.

Международная система единиц СИ (Systme international d’units, SI, СИ) — система единиц физических величин, современный вариант метрической системы, созданной в XVIII веке. Она принята в качестве основной в большинстве стран мира и наиболее часто используется в науке и технике, являясь самой широко используемой системой единиц в мире. Базовые единицы СИ — это метр, килограмм, секунда, ампер, кельвин, моль и кандела (единица силы света).

Последние изменения открывают новый этап в истории системы СИ — с сегодняшнего она окончательно переходит с эталонов в качестве материальных объектов на более стабильные методы расчетов значений при помощи формул, основанных на физических константах (постоянных величинах, входящих в уравнения, описывающие фундаментальные законы природы и свойства материи).

«Это приводит к более простому и более фундаментальному определению всей системы СИ и исключает последнее из определений, основанных на материальном артефакте — международном прототипе килограмма», — отмечается на сайте Международного бюро мер и весов (Bureau International des Poids et Mesures, BIPM). Изменения обеспечат большую стабильность системы СИ в будущем, также говорится в сообщении.

Килограмм оставался последней мерой, эталоном которой служил материальный объект. С 20 мая эталонный килограмм будет рассчитываться с помощью универсальной формулы, основанной на принципах квантовой физики, что гарантирует большую стабильность значений единицы.

Эталонный килограмм: от гири к формуле

Цилиндр из платино-иридиевого сплава, служивший эталоном килограмма до этого дня, хранится в Международном бюро мер и весов в городе Севр во Франции. Его масса была принята в качестве определения килограмма в 1889 году. Век спустя специалисты обнаружили, что эталон килограмма постепенно становится легче в сравнении с официальными копиями. За 100 лет их масса изменилась по отношению к эталону на 50 микрограмм (0,05 миллиграмм).

Согласно изменениям, принятым на 26-й Генеральной конференции по мерам и весам 16 ноября 2018 года, килограмм теперь будет определяться не массой материального объекта, а количеством электрической энергии, которое необходимо, чтобы сдвинуть с места объект весом в килограмм. Энергия, в свою очередь, будет рассчитываться на основе постоянной Планка.

Прикладное значение изменений

Введение нового определения повлияет на развитие тех научных областей и промышленных отраслей, где результат напрямую зависит от точности расчетов массы. Заместитель руководителя Росстандарт Сергей Голубев считает, что переход к новому определению килограмма может способствовать развитию фармацевтики.

«[Фармацевтика] — это одна из отраслей промышленности, где отмечается нехватка точности существующих подходов и определений <…> Фармацевтика и научная деятельность, если мы говорим о килограмме, — два ключевых направления, где произойдут какие-то перемены с переходом на новые определения», — сказал он корреспонденту ТАСС.

Говоря о конкретных преимуществах, которые получат производители и потребители лекарств после перехода на использование эталона килограмма в виде физической формулы, Голубев назвал «более точные дозировки, лучшее качество препаратов и лучшую воспроизводимость их свойств от партии к партии».

Еще три новых эталона

На 26-й Генеральной конференции по мерам и весам 16 ноября 2018 государства — члены Международного бюро мер и весов проголосовали за пересмотр Международной системы единиц (СИ), изменив мировое определение не только килограмма (единица массы), но и ампера (единица силы электрического тока), кельвина (единица термодинамической температуры) и моля (единица измерения количества вещества). Новые определения еще трех единиц системы СИ основаны на фиксированных числовых значениях элементарного заряда (e), постоянной Больцмана (k) и постоянной Авогадро (N A).

Кельвин определялся как определенная часть термодинамической температуры тройной точки воды — значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трех фаз (твердом, жидком и газообразном состояниях). Теперь 1 кельвин соответствует заданным параметрам изменения тепловой энергии. Для выражения единицы требуется постоянная Больцмана — физическая постоянная, определяющая связь между температурой и энергией.

«Новое определение [эталона кельвина] — определение термодинамическое, истинная температура. По старому определению это была так называемая практическая температура. Если вам нужно было изменить температуру, скажем, 3 тыс. градусов <…> погрешность получалась очень большая, около 3 градусов кельвина. Сейчас же, по этому определению, вы получаете десятые доли градуса, то есть во много раз повышается точность измерения температуры, в том числе высокой температуры <…> Точность измерения температуры, в том числе высокой, нужна для очень многих областей — это полупроводниковые технологии, технологии волоконных линий, металлургия, физика», — сказал ТАСС доктор технических наук, профессор Всероссийского научно-исследовательского института оптико-физических измерений Виктор Саприцкий.

Моль, определявшийся как количество вещества системы (к примеру, в растворе), содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг, теперь определяется как количество вещества системы, которая содержит число Авогадро (физическая постоянная, соответствующая числу атомов или молекул, содержащихся в одном моле вещества).

«[Новое определение эталона моля] очень важно для химии, биологии, медицины, пищевой промышленности — здесь важно знать соотношение веществ, которые смешиваются, потому что это завязано на молекулярную массу, и, соответственно, на единицу моль. Уточнение касается числа Авогадро — фундаментальной физической константы, наряду со скоростью света и зарядом электрона, которая определяет многие макропроцессы», — сообщил ТАСС доктор технических наук, профессор Всероссийского научно-исследовательского института оптико-физических измерений Геннадий Левин.

Новый эталон ампера определяется как электрический ток, соответствующий заданному значению потока элементарных электрических зарядов в секунду. Для выражения единицы требуется заряд электрона.

Измерение массового эталона с помощью электромеханического прибора «баланс Киббла»

© EPA-EFE/CHRISTOPHE PETIT TESSON

Что такое метрология

Как отмечается на сайте Международного бюро мер и весов, метрология — это наука об измерениях, охватывающая как экспериментальные, так и теоретические определения на любом уровне неопределенности в любой области науки и техники.

Отмечается, что от метрологии зависит эффективная и надежная работа сложной сети услуг, поставок и коммуникаций. «Например: экономический успех стран зависит от способности производить и продавать точно изготовленные и испытанные продукты и компоненты; <…> здоровье человека в решающей степени зависит от способности поставить точный диагноз и в котором надежные измерения приобретают все большее значение», — говорится на сайте бюро.

Во Всемирный день метрологии отмечают подписание Метрической конвенции, которая заложила основу для глобального сотрудничества в области науки об измерениях в ее промышленном, коммерческом и общественном применении. Конвенция была подписана 20 мая 1875 года представителями 17 стран. «Первоначальная цель Метрической конвенции — всемирное единообразие измерений — остается такой же важной сегодня, как это было в 1875 году», — отмечается на сайте Международного бюро мер и весов.

Также Всемирный день метрологии в этом году посвящен изменению системы единиц СИ. Его тема — «Международная система единиц измерения — принципиально лучше».

Пересмотр системы единиц СИ: новые определения ампера, килограмма, кельвина и моля

Международное бюро мер и весов планирует провести самую значительную реформу в международной системе единиц (СИ) со времени последней большой ревизии этого стандарта в 1960 году, пишет Nature. Придётся принимать новые ГОСТы, а также внести исправления в учебники физики в школе и вузах.

В настоящее время СИ (современный вариант метрической системы) принята в качестве основной системы единиц большинством стран мира и почти везде используется в области техники. Полное определение всех единиц СИ приведено в официальной брошюре (8-е издание) и дополнении к ней от 2014 года. Нынешний стандарт утверждён в СССР 1 января 1963 года ГОСТом 9867–61 «Международная система единиц».

Сфера из кремния-28 с чистотой 99,9998% может быть принята как эталон единицы измерения количества вещества, известной как моль (через число Авогадро). Фото: Национальная физическая лаборатория Великобритании

Руководство международной организации проголосует за предложенные изменения на Генеральной конференции по мерам и весам в 2018 году, а в случае положительного решения изменения вступят в силу с мая 2019 года. Новые определения для единиц измерения и эталонов никак не отразится на жизни обывателей: один килограмм картофеля в магазине останется тем же килограммом картофеля. Весы будут измерять овощи и мясо с той же точностью, что и раньше. Но эти определения важны для учёных, потому что в научных исследованиях должна соблюдаться идеальная точность формулировок и измерений. Международное бюро мер и весов считает, что новые эталоны позволят «обеспечить высочайший уровень точности в различных способах измерений в любом месте и времени и в любом масштабе, без потери точности».

Итак, какие же изменения нас ждут?

Сейчас Международное бюро мер и весов намерено пересмотреть определения и эталоны следующих единиц измерения:

  • ампер
  • килограмм
  • кельвин
  • моль

Следует оговориться, что далее по тексту новые определения приводятся в сокращённом виде и не соответствует в точности тексту, который записан в официальном документе. Сам документ и окончательные значения констант опубликуют в ближайшее время.

Современное определение принято III Генеральной конференцией по мерам и весам (ГКМВ) в 1901 году и формулируется так: «Килограмм есть единица массы, равная массе международного прототипа килограмма». При этом Международный прототип (эталон) килограмма хранится в Международном бюро мер и весов (расположено в городе Севр неподалёку от Парижа) и представляет собой цилиндр диаметром и высотой 39,17 мм из платино-иридиевого сплава (90% платины, 10% иридия). Размер прототипа примерно соответствует размеру мяча для гольфа.

Компьютерное изображение международного прототипа килограмма

Проблема с эталоном килограмма состоит в том, что любые материалы могут терять атомы или, наоборот, пополняться атомами из окружающего пространства. В частности, различные официальные копии эталонного килограмма, который хранится в Севре, отличаются по весу от официального эталона. Разница достигает 60 микрограмм. Такие изменения произошли за более чем 100 лет с момента создания копий.

Ещё одна проблема с единицами измерения фиксированного масштаба — то, что элемент неопределённости (погрешность) увеличивается по мере удаления от этой фиксированной точки (эталона). Например, сейчас при измерении миллиграмма элемент неопределённости в 2500 раз больше, чем при измерении килограмма.

Эта проблема решается, если определить единицу измерения через другую физическую постоянную. Собственно, в новом определении килограмма так и сделано: здесь используется постоянная Планка.

Новое определение: 1 килограмм равен постоянной Планка, поделенной на 6,626070040 × 10−34 м−25. Для выражения единицы требуется постоянная Планка.

Измерение массы на практике возможно с помощью ваттовых весов: через два отдельных эксперимента со сравнением механической и электромагнитной силы, а затем путём перемещения катушки через магнитное поле для создания разности потенциалов (на иллюстрации внизу). Грубо говоря, масса вычисляется через электроэнергию, которая необходима, чтобы поднять предмет, лежащий на другой чаше весов.

Кельвин

Современное определение: как записано в ГОСТе, 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём. В обязательном Техническом приложении к тексту Международной температурной шкалы МТШ‑90 Консультативный комитет по термометрии установил требования к изотопному составу воды при реализации температуры тройной точки воды.

Тройная точка воды — строго определённые значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом, жидком и газообразном состояниях.

Международный комитет мер и весов подтвердил, что определение кельвина относится к воде, чей изотопный состав определён следующими соотношениями:

0,00015576 моля 2H на один моль 1Н

0,0003799 моля 17О на один моль 16О

0,0020052 моля 18О на один моль 16О.

Проблемы современного определения очевидны. При практической реализации величиа кельвина зависит от изотопоного состава воды, а на практике практически невозможно добиться молекулярного состава воды, который соответствует Техническому приложению к тексту Международной температурной шкалы МТШ‑90.

Ещё в 2011 году на заседании Генеральной конференции по мерам и весам было предложено в будущей редакции Международной системы единиц переопределить кельвин, связав его со значением постоянной Больцмана. Таким образом, значение кельвина впервые будет точно зафиксировано.

Новое определение: 1 кельвин соответствует изменению тепловой энергии на 1,38064852 × 10−23 джоулей. Для выражения единицы требуется постоянная Больцмана.

Измерять точную температуру можно с помощью измерения скорости звука в сфере, заполненной газом. Скорость звука пропорциональна скорости перемещения атомов.

Современное определение: моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

Новое определение: количество вещества системы, которая содержит 6,022140857 × 1023 специфицированных структурных единиц. Для выражения единицы требуется постоянная Авогадро (число Авогадро).

Для эталона числа Авогадро — а через него и моля — учёные предлагают создать идеальную сферу из чистого кремния-28. У этого вещества идеально точная кристаллическая решётка, так что количество атомов в сфере можно определить, если точно измерить диаметр сферы (с помощью лазерной системы). В отличие от существующего куска платиново-иридевого сплава, скорость потери атомов кремния-28 точно предсказуема, что позволяет вносить коррективы в эталон.

Первые опыты по созданию такого эталона предприняли в 2007 году. Исследователи из берлинского Института выращивания кристаллов под руководством Хелге Риманна (Helge Riemann) приобрели в России обогащённый кремний-28 и сумели получить образец изотопа 28 с чистотой 99,994%. После этого исследователи ещё несколько лет анализировали состав 0,006% «лишних» атомов, определяли точный объём сферы и проводили рентгеноструктурный анализ. Изначально предполагалось, что «идеальные» сферы из кремния-28 могут быть утверждены в качестве нового стандарта для килограмма. Но сейчас более вероятно то, что их используют как эталон числа Авогадро и моля. Тем более что за время, прошедшее с 2007 года, физики научились производить гораздо более чистый кремний-28.

Сфера из кремния-28 с чистотой 99,9998. Фото: CSIRO Presicion Optics

В 2014 году американские физики сумели обогатить кремний-28 до беспрецедентного качества в 99,9998% в рамках международного проекта по расчёту числа Авогадро.

Ампер

Современное определение предложено Международным комитетом мер и весов в 1946 году и принято IX Генеральной конференцией по мерам и весам (ГКМВ) в 1948 году: «Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10−7 ньютона».

В современном определении ампер определяется через некий мысленный эксперимент, который предусматривает возникновение силы в двух проводах бесконечной длины. Очевидно, что на практике мы не может измерить такую силу, потому что по определению не может существовать двух проводников бесконечной длины.

Изменить определение ампера предложили на том же заседании Генеральной конференции по мерам и весам в октябре 2011 года, что и определение кельвина. Идея заключалась в том, что новое определение должно быть основано не на созданный человеком артефактах через мысленный эксперимент, а на фундаментальных физических постоянных или свойствах атомов. Итак, новое определение выражается только через одну постоянную — заряд электрона.

Новое определение: электрический ток, соответствующий потоку 1/1,6021766208 × 10−19 элементарных электрических зарядов в секунду. Для выражения единицы требуется заряд электрона.

На практике для определения ампера понадобится только один инструмент — одноэлектронный насос. Такие инструменты создали несколько лет назад. Они позволяют перемещать определённое количество электронов в течение каждого насосного цикла, что является крайне ценным качеством для фундаментальной науки и метрологии.

Определения секунды, метра и канделы, судя по всему, остаются неизменными, как показано на иллюстрации.

В новой системе СИ определение всех единиц выражается через константу с фиксированным значением. Многие единицы определяются во взаимосвязи с другими единицами. Например, определение килограмма определяется через постоянную Планка, а также через определения секунды и метра.

Считается, что такая система гораздо более устойчива и самодостаточна.

ампер | Единицы измерения Wiki

На этой странице используется контент из английской Википедии . Оригинальная статья была в Ampere. Список авторов можно увидеть на страницах истории . Как и в случае с Вики-сайтом «Единицы измерения», текст Википедии доступен по лицензии Creative Commons, см. Wikia: Licensing.

ампер (символ: A) — это базовая единица измерения электрического тока в системе СИ, равная одному кулону в секунду.Он назван в честь Андре-Мари Ампера, одного из главных первооткрывателей электромагнетизма.

Ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создаст между этими проводниками силу, равную 2 -7 ньютон на метр длины.

Поскольку это базовая единица, определение ампера не связано с какой-либо другой электрической единицей.Определение для ампера эквивалентно установке значения проницаемости вакуума на μ 0 = 4π × 10 -7 Гн / м. До 1948 г. использовался так называемый «международный ампер», определяемый как скорость электролитического осаждения серебра. Старший блок равен 0,999 85 А.

Ампер наиболее точно определяется с использованием баланса ампер, но на практике он поддерживается с помощью закона Ома из единиц напряжения и сопротивления, вольта и ома, поскольку последние два могут быть связаны с физическими явлениями, которые относительно легко воспроизводят джозефсоновский переход и квантовый эффект Холла соответственно.

Единица электрического заряда, кулон, определяется в амперах: один кулон — это количество электрического заряда (ранее количество электричества), переносимого током в один ампер, протекающим в течение одной секунды. Таким образом, ток (электричество) — это скорость, с которой заряд протекает через провод или поверхность. Один ампер тока (I) равен потоку одного кулона заряда (Q) в секунду времени (t):

Так как кулон примерно равен 6.24 × 10 18 элементарных зарядов, один ампер эквивалентен 6,24 × 10 18 элементарных зарядов, таких как электроны, движущихся через поверхность за одну секунду. Точнее, используя определения СИ для обычных значений постоянной Джозефсона и констант фон Клитцинга, ампер можно определить как точно 6,241 509 629 152 65x 10 18 элементарных зарядов в секунду. это?

e-SI-Amp — e-SI-Amp

Наш проект фокусируется на квантовых реализациях ампера , единицы измерения электрического тока в системе СИ

Ампер — основная единица измерения электрического тока в Международной системе единиц (система СИ).Вплоть до мая 2019 года это формально определялось механическими силами между проводами. Это определение было заменено на определение, основанное на квантовании заряда.

Проект e-SI-Amp был создан для разработки способов создания и распространения прецизионных стандартов электрического тока в этой переопределенной системе, основанной на фундаментальных константах.

Новости: Принята новая система СИ!

Si Базовые блоки

С 20 мая вступает в силу новая система базовых единиц, в том числе переопределенный ампера, основанный на фиксировании числового значения элементарного заряда.В Википедии есть хороший обзор переопределения. Более подробную информацию о том, как реализовать ампер, смотрите в этой обзорной статье.

Щелкните здесь, чтобы увидеть полный список новостей…

Новости: Заключительное совещание по проекту консорциума e-SI-Amp

LNE, Париж

Последнее совещание о ходе разработки e-SI-Amp состоялось в Париже, в штаб-квартире LNE.
Для получения дополнительной информации нажмите здесь.

Щелкните здесь, чтобы увидеть полный список новостей…

Новости: Обзорные статьи о квантовых стандартах

Новости: Единогласное решение одобрить новый SI

CGPM

Мировое сообщество метрологов собралось на CGPM, чтобы решить, может ли продолжаться долгожданное переопределение базовых единиц СИ, и ответ был единодушен — да!

Есть много сообщений об этом голосовании, e.грамм. Мир физики, новости BIPM

Последние опубликованные (открытый доступ) научные результаты:

Наш проект генерирует новые научные результаты, которые передаются научному сообществу через рецензируемые статьи в высококачественных журналах. Это статьи в открытом доступе, — полный текст статей доступен всем, даже тем, у кого нет подписки на эти журналы. См. Галерею ниже для обзора самых последних (они содержат ссылки на полный текст).

Если у вас есть какие-либо вопросы по поводу этих результатов, партнеры проекта будут заинтересованы поговорить с вами (свяжитесь с [email protected] или напрямую с партнерами проекта).

Передача знаний и взаимодействие с конечными пользователями

Мы работаем с сообществами конечных пользователей, чтобы помочь им получить доступ к сверхстабильным стандартам электрического тока. Мы ищем способы, с помощью которых этим пользователям можно будет поделиться передовой методикой измерения, новейшим оборудованием и информацией о первичных эталонах.

Вот несколько примеров существующих взаимодействий с конечными пользователями:

Если вы хотите узнать, как вы можете взаимодействовать с проектом, свяжитесь с [email protected]

Фон

Вскоре будет изменено определение СИ-ампер, при этом существующее определение, основанное на механических силах, будет заменено определением, основанным на квантовании заряда . Все электроны имеют одинаковый заряд, что может быть использовано в качестве основы для определения электрического тока.

Предлагаемые базовые единицы СИ с использованием квантовых электрических единиц

Размер заряда электрона в настоящее время составляет , измеренный составляет e = 1,602 176 6208 (98) × 10 −19 кулонов в существующей системе СИ. Фиксация этого параметра как константы в новой системе единиц открывает новые способы получения точных эталонов электрического тока.

Одноэлектронные насосы могут транспортировать электроны по одному с высокой скоростью.Перемещение отдельных электронов с известной скоростью через цепь, в которой используются эти устройства, дает очень точный эталон тока. Квантовые стандарты сопротивления и напряжения также могут быть использованы для реализации квантовых электрических единиц способом, совместимым с фиксацией квантования электронного заряда.

Схематическое изображение электронного насоса

Практическая реализация электронной накачки в полупроводниковом приборе

Консорциум

Мы — группа европейских национальных измерительных институтов и других исследовательских институтов, специализирующихся на одноэлектронных устройствах, квантовых электрических стандартах и ​​прецизионных измерениях малых токов.

Мотивация

Мы стремимся поддержать будущую первичную электрическую метрологию на основе одноэлектронных устройств.

Наши цели — развивать:

  • Одноэлектронные источники тока с уровнем тока ≈1 нА с погрешностью не более 1 части из 10 7 .
  • Испытания универсальности, надежности и воспроизводимости одноэлектронных источников тока для практической реализации СИ-ампер.
  • Возможность высокоточного измерения тока через NMI для тестирования различных типов одноэлектронных устройств.
  • Руководство по проверке точности одноэлектронных стандартов тока.

Ключевая цель — облегчить внедрение технологии и измерительной инфраструктуры, разработанной в рамках проекта, цепочкой поставок средств измерений (аккредитованные лаборатории, производители измерительных приборов) и конечными пользователями (отрасли, в которых измерения малых токов на пико- требуются уровни ампер и фемтоампер).

Формально проект разделен на четыре взаимосвязанных рабочих пакета.

Разница между вольтом и усилителем со сравнительной таблицей

Одно из основных различий между вольт и ампером состоит в том, что вольт — это единица измерения напряжения, разности потенциалов и электродвижущей силы в системе СИ, тогда как ампер — единица измерения тока в системе СИ. Вольт и ампер различаются ниже по различным другим факторам.

Содержание: Вольт против усилителя

Сравнительная таблица

Основа для сравнения Вольт Усилитель
Определение Измеряет силу, которая заставляет электрон течь через проводник. Измеряет скорость потока электронов через проводник.
Формула Джоуль / кулон Кулон / сек
Сокращение V A
Измеряемое количество Напряжение, электродвижущая сила и разность потенциалов. Электрический ток.
Измерительный прибор Вольтметр Амперметр

Определение напряжения

Вольт измеряют работу, совершаемую электрическим зарядом по перемещению от одного конца к другому.Это единица измерения разности потенциалов, электрического потенциала и электродвижущей силы. Вольт обозначается символом V. Микровольт, милливольт, киловольт и мегавольт — это субъединицы вольт. Один вольт равен работе, которую совершает один джоуль для зарядки тела за один кулон.

Определение усилителя

Ампер — это единица измерения электрического тока в системе СИ. Он измеряет скорость потока электрического заряда через проводник. Он обозначен символом A. Один ампер равен одному кулону заряда, который математически равен 6.242 X 10 18 раз больше элементарного заряда.

Ключевые различия между напряжением и усилителем.

  1. Вольт измеряет силу, которая заставляет электроны проходить через проводник, тогда как усилитель измеряет скорость потока электронов.
  2. Вольт равняется отношению джоулей на кулон, тогда как ампер выражается в кулонах в секунду.
  3. Вольт обозначается символом V, а ампер — символом A.
  4. Вольт — это единица измерения разности потенциалов, напряжения и электродвижущей силы, а ампер — это единица измерения тока.
  5. Вольт измеряется вольтметром, а амперметр — амперметром.

Вольт и ампер оба соотносятся с законом сопротивления.

Amp — Ayuda de Lyft

El Amp — это блестящая эмблема Lyft, которая использует элегантные кондукторы. В Los Amps есть все, что вам нужно для вечеринок, и все, что вам нужно, для пасажиров и кондукторов.

Эль-Амп-эс-эль-секрето для морских мастеров, обнаруживающих пасажерос и тенер-майорес-виа.

Tu Amp te muestra cuando recibes un nuevo pedido de viaje, excepto durante los viajes Compartidos.

Cuando распознает одно пасажерское приложение, которое является цветным усилителем. Esto ayuda a los pasajeros a encontrar tu vehículo para que la partida sea más fácil y rápida.

Después de recoger a un pasajero, la parte trasera de tu Amp le da la bienvenida por su nombre. También puede mostrar mensajes especiales relacionados con días festivos o con algunos eventos.

Durante los viajes comparetidos, tu Amp mostrará los nombres de los pasajeros según suban y bajen del auto.

La distribución de los Amps está temporalmente suspendida en los Estados Unidos.

Используйте доступные усилители, чтобы получить доступ к приложению Lyft Driver, если хотите:

  1. Перейти в меню приложения

  2. Toca «Amp».

  3. Toca la opción «Elegibilidad».

Нет разрешения на использование усиленного разрешения или разрешения на использование.

Aunque tengas un Amp, algunas regiones exigen que muestres calcomanías de emblemas delanteros y traseros mientras manejas.

Algunos vehículos de alquiler include un Amp. Cuida tu Amp y devuélvelo con el vehículo de Express Drive; de lo contrario, deberás pagar un cargo.

La disponibilidad de los Amps es limitada, por lo que es posible que tu auto de alquiler no Incluya uno.

Presiona el botón de encendido una vez para encender o apagar el Amp.

Para restablecer tu Amp, mantén presionado el botón de encendido durante 10 segundos. Si lo restableces ,tendrás que volver a emparejarlo.

Los Amps más recientes deben estar conectados mientras están encendidos.

Si tienes un Amp Antiguo, la duración de la batería será de hasta 8 horas. Включите аккумулятор с кабелем micro USB для подключения усилителя. Si la batería de tu Amp está baja, puedes conectarlo para seguir usándolo mientras haces viajes.

Подключите кабель питания к усилителю, который работает, и подключите кабель с разъемом Micro USB. Нет podemos proporcionar repuestos de cabin de alimentación.

Si tienes un Amp antiguo, es posible que las temperaturas extremas afecten la duración de la batería. En climas cálidos o fríos, te recomendamos llevar tu Amp a un área bajo techo cuando no lo estés usando.

Для синхронизации с усилителем с приложением Lyft Driver:

  1. Перейти к меню приложения

  2. Toca «Amp».

  3. Toca «Винкулар ми усилитель».

Para emparejar tu Amp, tenrás que encender el Amp y el Bluetooth de tu teléfono.

Después de que emparejes tu Amp, se conectará automáticamente a la app la próxima vez que lo enciendas.

Si tienes issuesas para vincular tu Amp, mantén presionado el botón de encendido durante 10 segundos para reiniciarlo.

Para instalar tu Amp en el tablero:

  1. Limpia un espacio en tu tablero concohol de fricción. Espera a que seque por Completeto.

  2. Retira la etiqueta adhesiva de la base.

  3. Coloca la base con el logotipo de Lyft mirando hacia el parabrisas delantero.Presiona hacia abajo firmemente durante 30 segundos.

  4. Coloca tu Amp en la base magnética.

  5. Conecta tu Amp с кабелем micro USB, включая.

El adhesivo de la base se ha Despecíficamente para no dañar tu tablero.

Puedes quitar fácilmente tu Amp de la base cuando no lo estás utilizando.

Problemas con Amp y sus soluciones

Tu app de Lyft Driver puede guiarte paso a paso para solucionar problemsas con tu Amp:

  1. Abre el menu de la app

  2. Toca «Amp».

  3. Toca «Resolución de problemas».

  4. Toca el проблема con el que necesitas ayuda.

Por el momento, no podemos proporcionar repuestos de Amps, базы для Amps или кабели питания.

Consulta también lo siguiente:

Метрические префиксы и единицы СИ

Добавлено в избранное

Любимый

20

Введение

Метрические префиксы

невероятно полезны для более краткого описания количеств Международной системы единиц (СИ).

При изучении мира электроники эти единицы измерения очень важны и позволяют людям со всего мира общаться и делиться своими работами и открытиями. Некоторые общие единицы, используемые в электронике, включают напряжение для разности электрических потенциалов, ампер для электрического тока, ватты для мощности, фарады для емкости, единицы Генри для индуктивности и омы для сопротивления.

Это руководство не только рассмотрит некоторые из наиболее часто используемых единиц в электронике, но также научит вас метрическим префиксам, которые помогают описывать все эти базовые единицы в количествах, варьирующихся от безумно больших до невероятно малых.

Рекомендуемая литература

Если вы хотите узнать больше о компонентах, использующих единицы измерения и префиксы, описанные в этом руководстве, ознакомьтесь с некоторыми из этих связанных руководств.

Резисторы

Учебник по резисторам. Что такое резистор, как они ведут себя параллельно / последовательно, расшифровка цветовых кодов резисторов и применения резисторов.

Конденсаторы

Узнайте обо всем, что касается конденсаторов.Как они сделаны. Как они работают. Как они выглядят. Типы конденсаторов. Последовательные / параллельные конденсаторы. Конденсаторные приложения.

Вы также должны быть знакомы с двоичным кодом, чтобы лучше понимать двоичные префиксы.

двоичный

Двоичная система — это система счисления электроники и программирования … поэтому важно научиться этому. Но что такое двоичный код? Как это переводится в другие системы счисления, такие как десятичные?

Единицы СИ

Мы измеряем вещи на протяжении тысячелетий, и с тех пор наши единицы измерения, используемые для этих мер, развивались.Сейчас существуют десятки единиц для описания физических величин. Например, длину можно измерить в футах, метрах, саженях, цепях, парсеках, лигах и так далее. Чтобы лучше передавать результаты измерений, нам нужна была стандартизированная система единиц, которую каждый ученый и замерщик мог бы использовать для обмена своими открытиями. Эта стандартизованная система получила название \ Международная система единиц \ , сокращенно SI .

Физические единицы СИ

Количество Единица СИ Аббревиатура единицы
Время секунд с
Длина метров м
Масса

г кельвин К
Сила ньютон Н

Хотя мы все еще можем использовать такие единицы измерения, как футы или мили для расстояния (вместо метров), литры для описания объема (вместо метра 3 ) и Фаренгейта или Цельсия для описания температуры (вместо ° K), единицы выше Стандартизированный способ для каждого ученого поделиться своими измерениями.Использование указанных выше единиц означает, что все говорят на одном языке.

Общие электронные блоки

Имея дело с электроникой, есть несколько устройств, с которыми мы будем сталкиваться чаще, чем другие. К ним относятся:

65 Гц

03 теперь мы знаем, как могут быть дополнены префиксами, чтобы сделать их еще более удобными!

Префиксы

Когда вы впервые узнали о метрических префиксах, скорее всего, вас сначала учили этим шести префиксам:

Количество Единица СИ Аббревиатура единицы
Разность электрических потенциалов (напряжение) В В
Электрический ток Ампер 000 000 000 Вт W
Энергия / Работа / Тепло Дж Дж
Электрический заряд кулонов C
Сопротивление Ом & Ом;
Емкость фарад F
Индуктивность генри H
Частота герц
Префикс (символ) Мощность Числовое представление
килограмм 10 3 1 000
га (ч) 10 2 100
дека (да) 10 1 10
без префикса 10 0 1 шт.
деци (г) 10 –1 0.1
санти (c) 10 -2 0,01
милли (м) 10 -3 0,001

Это то, что мы будем считать стандартными шестью префиксами, которые преподаются на большинстве научных курсов в старших классах. Возможно, вы даже выучили забавную мнемонику, которая подходит к ним, например, У кенгуру грязное белье в холодные месяцы . Однако, как вы скоро увидите, изучая электронику и информатику, диапазон префиксов значительно превышает стандартные шесть.Хотя эти префиксы охватывают диапазон от 10 -3 до 10 3 , многие электронные значения могут иметь гораздо больший диапазон.

Описание большого

Префикс (символ) Мощность Числовое представление
йотта (г) 10 24 1 септиллион
дзетта (Z) 10 21 1 секстиллион
exa (E) 10 18 1 квинтиллион
пета (P) 10 15 1 квадриллион
тера (Т) 10 12 1 трлн
гига (G) 10 9 1 миллиард
мега (M) 10 6 1 миллион
килограмм 10 3 1 тыс.
без префикса 10 0 1 шт.

Эти префиксы, указанные выше, существенно помогают описать количество единиц в больших количествах.Вместо 3,200,000,000 герц вы можете сказать 3,2 гигагерца или 3,2 ГГц для сокращенной записи. Это позволяет кратко описать невероятно большое количество единиц. Существуют также префиксы, которые помогают передавать крошечные числа.

Описание малого

Префикс (символ) Мощность Числовое представление
без префикса 10 0 1 шт.
милли (м) 10 -3 1 тысячная
микро (µ) 10 -6 1 миллионная
нано (n) 10 -9 1 миллиардная
пик (п) 10 -12 1 триллионная
фемто (ж) 10 -15 1 квадриллионная
атто (а) 10 -18 1 квинтиллионная
zepto (z) 10 -21 1 секстиллион
лет 10 -24 1 септиллион

Теперь вместо одной триллионной секунды это может быть пикосекунда.Одна вещь, которую следует отметить в отношении префиксов для малых значений, заключается в том, что их сокращенные обозначения все в нижнем регистре, а префиксы для больших чисел — в верхнем регистре (за исключением kilo- *, hecto- и deca-). Это позволяет вам различать их, когда они используют одну и ту же букву. Например, один мВт (милливатт) не равен одному мегаватту (мегаватту).

* Примечание: Поскольку заглавная буква «K» уже использовалась для описания Кельвина, строчная буква «k» была выбрана для обозначения префикса kilo-.Как вы увидите в разделе «Биты и байты», также существует некоторая путаница с k и K при работе с двоичными (базовыми 2) префиксами.

Преобразование

Прекрасная особенность этих метрических префиксов заключается в том, что как только вы освоите преобразование между некоторыми из них, преобразовать эту способность во все другие префиксы будет легко.

В качестве первого простого примера давайте переведем 1 ампер (А) в меньшие значения. Миллиампер равен 1 тысячной единицы Ампера, следовательно, 1 Ампер равен 1000 миллиампер.Далее, 1 миллиампер эквивалентен 1000 микроампер и так далее. В обратном направлении 1 ампер равен 0,001 килоампера, или 1000 ампер — это 1 килоампер. Вот это много тока!

Как вы могли заметить, переключение между префиксами аналогично перемещению десятичной точки на 3 разряда. Это также то же самое, что умножение или деление на 1000. Когда вы переходите к большему префиксу, например, от килограмма до мегапикселя, десятичный разряд перемещается на три позиции влево.100000 киловатт равняются 100 мегаваттам. 10 киловатт равняются 0,01 мегаватт. Мега — это префикс прямо над килограммами, поэтому независимо от того, говорим ли мы о ваттах, амперах, фарадах или какой-либо другой единице, перемещение десятичного разряда на три позиции влево по-прежнему работает при перемещении префикса вверх.

При перемещении вниз по префиксу, скажем, от нано- к пико-, десятичный разряд перемещается на три позиции вправо. 1 нанофарад равен 1000 пикофарад. 0,5 нанофарад равняется 500 пикофарад. Вот краткий список, чтобы вы могли увидеть узор:

1 гига- = 1000 мега-
1 мега- = 1000 килограммов
1 килограмм = 1000 единиц
1 единица = 1000 милли-
1 милли- = 1000 микро-

Видите тенденцию? Каждый префикс в тысячу раз больше предыдущего.Поначалу это немного утомляет, но со временем перевод с одного префикса на другой становится второй натурой.

Биты и байты

Работа с битами и байтами может вызвать некоторую путаницу (каламбур). Поскольку компьютеры работают с числами с основанием 2, а не с основанием 10, часто неясно, к какому основанию относится число при использовании метрических префиксов. Например, 1 килобайт часто используется для обозначения 1000 байтов (основание 10) или может использоваться для представления 1024 байтов (основание 2), что приводит к недоразумениям.

Чтобы устранить эту путаницу, Международная электротехническая комиссия предложила несколько новых префиксов для двоичных разрядов и байтов. Они называются двоичными префиксами.

Префикс (символ) Мощность Числовое представление
exbi- (Ei-) 2 60 1,152,921,504,606,846,976
pebi- (Pi-) 2 50 1 125 899 906 842 624
Теби- (Ti-) 2 40 1 099 511 627 776
гиби (Gi-) 2 30 1,073,741,824
меби- (Ми-) 2 20 1 048 576
киби (ки) 2 10 1,024
без префикса 2 0 1 бит или байт

Принятие этого значения будет означать, что 1 мегабайт = 1000 килобайт, а 1 мебибайт равен 1024 кибибайтам.3). К сожалению, эта система не получила широкого распространения на практике, поэтому каждый раз, когда вы слышите количество байтов или битов, вы должны задаться вопросом, говорят ли они о них в базе 2 или 10.

Компании по производству жестких дисков и другие компании обычно продают товары с базой 10, поскольку это делает ее более крупной. Жесткий диск объемом 1 терабайт фактически составляет около 931,3 гибибайта.

Здесь мы сталкиваемся с ситуацией «k» в верхнем и нижнем регистрах. Правильный префикс киби, если «Ки». Тем не менее, иногда это будет просто буква «K» в верхнем регистре, что, опять же, означает температуру в Кельвинах.Итак, всякий раз, когда вы слышите слово «килобайт», вам все равно придется задаться вопросом, означает ли оно 1000 байтов (основание 10) или 1024 байта (основание 2). С другой стороны, если вы видите термин кибибайт, вы наверняка знаете, что он говорит об интерпретации цифровой памяти в базовой версии 2 (1024 байта).

Преобразование битов в байты и байтов в биты

Мы рассмотрели преобразование битов и байтов в большее или меньшее количество каждого из них, но есть также вопрос преобразования битов с в байта и наоборот.Помните, что 1 байт равен 8 битам (большую часть времени), а один бит равен 0,125 байта (или 1/8). Конечно, есть много порядков, относящихся к битам, но байт обычно используется наиболее часто. Практика преобразования между одним и другим не так уж и распространена, но все же это полезная информация при работе с электроникой, особенно когда дело касается памяти. Например, вы можете писать код, в котором хранятся отдельные биты, но ваша память определяется как байты.

Практика

Теперь несколько практических упражнений. Мы будем использовать стандартные сокращения для каждого типа единиц, который мы будем преобразовывать:

  • А для ампер
  • В для Вольт
  • Вт для Вт
  • Гц для Hertz
  • F для Фарадов
  • H для Генри
  • Ом для Ом
  • с для секунд
  • B ​​для байтов
  • b для бит

Пример преобразования:

  • Преобразовать: 400 мА в
  • Ответ: 400 мА =.4 А

Преобразовать:

  1. 50 мА по A
  2. от 10 нФ до пФ
  3. 500 кВт по
  4. Вт

  5. от 0,01 мВ до мкВ
  6. 20000 кОм на МОм
  7. от 4680 МГц до ГГц
  8. 4 ТиБ в ГиБ
  9. 200 Мб в КБ
  10. .00007 с до мкс
  11. от 1450 нГн до мкГн

Практические ответы

  1. .05 А
  2. 10000 пФ
  3. 500 000 Вт
  4. 10 мкВ
  5. 20 МОм
  6. 4.68 ГГц
  7. 4096 ГиБ
  8. 200000 кб
  9. 70 мкс
  10. 1,45 мкГн

Скоро переключение между префиксами при необходимости станет очень быстрым.

Ресурсы и дальнейшее развитие

Умение преобразовывать числа в лучший префикс в зависимости от размера числа — важный навык. Это позволяет избежать действительно длинных и беспорядочных чисел, таких как 5 600 000 или 0,0000002. Использование 5.6M или 2n позволяет передавать информацию быстрее, в более аккуратном и удобном для чтения формате.

Теперь, когда вы знакомы с метрическими префиксами, подумайте о том, чтобы взглянуть на наше руководство «Как использовать мультиметр». Использование мультиметра требует хорошего понимания всех префиксов, поскольку ваши измерения часто будут отображаться как таковые.

Freightliner DNL Генератор 28 SI 200 А на подушке 8741

Описание продукта

Freightliner DNL Генератор 28 SI 200 Amp Pad Mount 8741

Получите профессиональное качество установки по цене DIY с Freightliner DNL Alternator 28 SI 200 Amp Pad Mount 8741.Эти генераторы производятся в соответствии со строгими стандартами качества QS-9000 — высочайшим стандартом качества, достижимым для поставщиков автомобильных запчастей. Генератор Freightliner DNL 28 SI 200 Amp Pad Mount 8741 спроектирован с нуля, чтобы обеспечить беспрецедентную надежность. НОВЫЙ генератор Premium предлагает максимальную надежность

Используется на

Freightliner
Argosy
C112 Century Class C120 Century Class
Cascadia
Century Class
Classic
Columbia
Condor
Coronado
FB65
FL50
FL60
FL70
FLD112
FLD120
FLD120SD
FS65
M2 106
M2 112
MB Line
MT35
MT45
MT55
S2

Заменяет:

Blue Bird 0108218
Delco 10459342, 8600314, 8600316 Lee19873C International Truck39 4945AAH, A160207
Lester 8741

Spec

OEM (ы): Delco
Семейство: Delco 28SI
Напряжение: 12
Ампер: 200
Состояние: Новое Расположение вентилятора
: Внутреннее Расположение регулятора
: Внутреннее Тип крепления
: Подушечка
Размер шпильки: 5 / 16-18
Полярность: отрицательная
Гарантия: 1 год
Примечания: • Монтажные проушины DE 10.Внутренний диаметр 6 мм без резьбы
• Монтажные проушины SRE без резьбы с внутренним диаметром 12,0 мм
• Клеммы I и R 10-24
• Система 1-Wire
• Самовозбуждение
Применение: грузовые автомобили средней и большой грузоподъемности Вес: 19,735 фунтов

ПРИМЕЧАНИЕ

Генератор Freightliner DNL 28 SI 200 Amp Pad Mount 8741 с самого начала производятся из 100% новых компонентов для обеспечения неизменно высокого качества. Все агрегаты производятся в соответствии с техническими характеристиками оригинального оборудования или даже превосходят их.Наши продукты производятся на сертифицированных предприятиях, что обеспечивает непревзойденное качество и надежность. В производственном процессе используются только самые качественные материалы. Обслуживающий Дейд, Бровард, Дорал, Хайалиа, Майами, Форт-Лодердейл, Уэст-Палм, Тампа, Орландо, Джексонвилл, Техас, Неаполь, Форт-Майерс, Интернэшнл, Флорида, Ки-Ларго, марафон

Прочие сведения

Политика возврата и гарантии

Мы продаем только высококачественные продукты и прилагаем все усилия, чтобы вы были довольны своими покупками, сделанными в D&L Auto и Marine.Ниже приводится наша политика возврата и гарантии

:

При правильной установке на наши генераторы и стартеры предоставляется гарантия от дефектов материалов и изготовления на замену сроком на один год с оригинальной квитанцией.
Мы предлагаем годовую гарантию на замену специализированных устройств, например, газонов и садов, морских судов, квадроциклов, промышленных стартеров и генераторов переменного тока, а также двигателей постоянного тока.
Эта гарантия распространяется на применение при НОРМАЛЬНОМ использовании и обслуживании и не распространяется на перегрузку (обгорелость), ржавчину, преднамеренное неправильное обращение, погружение в воду, поломку приводных шестерен или корпусов и / или другие повреждения, не связанные напрямую с изделием.
Гарантия НЕДЕЙСТВИТЕЛЬНА, если устройство было неправильно установлено, небрежно обращалось, закаливалось или демонтировалось.
Гарантия ограничивается только ремонтом или заменой дефектных устройств. Мы не предлагаем возмещение за любые электрические элементы, которые были установлены на транспортном средстве. Комиссия за возврат (20%) будет применяться ко всем возвратам. Возврат средств по специальным заказам не производится. Если возмещение будет предоставлено, это будет только в размере покупной цены товаров (требуется оригинал чека). Стоимость доставки не возвращается.
Покупатель несет ответственность за все расходы по доставке гарантийного товара.
Мы не покрываем никаких трудовых претензий.

ПРИМЕЧАНИЕ. Гарантия иногда может длиться до 14 дней.

Что такое усилитель (ампер)? Единица силы тока (СИ)

Ампер (символ: A) — это базовая единица СИ, используемая для измерения силы электрического тока.

Он получил свое название от французского физика Андре-Мари Ампера (1775-1836), одного из ведущих исследователей электромагнетизма.

Являясь одной из семи основных единиц СИ, все другие электромагнитные единицы являются производными от нее. По определению, ампер — это сила электрического тока, который, если его поддерживать в двух параллельных линейных проводниках бесконечной длины и незначительного поперечного сечения, расположенных на расстоянии одного метра друг от друга в вакууме, создает силу, равную друг другу в 2 раза. 10 -7 Н на каждый метр длины.

Правильный способ писать ампер — использовать начальную строчную букву, за исключением случаев, когда в соответствии с грамматическими правилами вы должны писать слово, начальное использование заглавных букв.

Следовательно, ампер имеет большое значение в области электричества. Эта единица появляется при расчете размеров фотоэлектрической солнечной энергетической установки.

Устройство, называемое амперметром, используется для измерения силы тока.

Что такое определение ампера?

Есть два определения ампер:

  • Определение силы тока на основе электрических явлений.
  • Определение силы тока на основе магнитных явлений.

Определение ампера на основе электрических явлений

Ампер выражает силу тока в проводнике, пересекаемом на любом участке после заряда кулонов за одну секунду.

По аналогии, сила тока сравнима с количеством воды, которая проходит через трубку, измеряется в кг / сек, где масса воды представляет собой электрический заряд.

Электрический заряд, то есть количество электронов, можно выразить в ампер-часах (Ач). Ампер-час — это общее количество заряда, протекающего с силой в один ток в проводник за один час.

При таком размере, например, измеряется максимальный заряд аккумуляторов: в аккумуляторе автомобиля содержится примерно 55 Ач.

Внутри единиц СИ применяется равенство:

С буквой «C» для кулонов, «s» для секунды, «V» для вольт, «Ω» для ом и «W» для ватт. Отсутствие коэффициентов связано с тем, что Международная система является последовательной системой измерения, что означает, что произведение или частное нескольких единиц дает начало новой единице стоимости единицы.

Определение ампера на основе магнитных явлений

Согласно закону Ампера, ампер можно определить как силу тока, который должен протекать по двум кабелям бесконечной длины, расположенным на расстоянии одного метра, так что они притягиваются друг к другу. усилие, равное 2 × 10 — 7 Н / м.

Образцы для измерений

Из-за сложности измерения сил между двумя проводниками был предложен так называемый международный ампер или статампер: определяемый в терминах скорости осаждения серебра (международный ампер — это сила тока, который через раствор AgNO 3 [одновалентный Ag], нанесенный на катод (0,001118 г серебра за одну секунду), равен 0,99985 А.

Эта единица измерения, однако, считается устаревшей.

В настоящее время, однако, большинство национальных метрологических институтов используют наборы образцов и резисторы для поддержания образцов первичной силы тока.

Выборка силы электрического тока выводится из закона Ома с использованием двух выборок, одна из ЭДС и одна из сопротивления.

Образец ЭДС представляет собой группу насыщенных куч Вестона, контролируемых эффектом Джозефсона; Электрическое сопротивление определяется как среднее сопротивление группы из 10 образцов резисторов в манганине 1 Ом.

Чтобы избежать влияния контактного сопротивления между сопротивлением и измерительной схемой, образцы резисторов имеют конкретный вариант осуществления с четырьмя выводами: два внешних амперометрических, через которые сопротивление проходит через электрический ток, и два внутренних напряжение по сравнению с амперометрикой, в которой устранено падение напряжения, вызванное циркуляцией электрического тока.

В чем разница между вольт и ампером?

Вольт — единица международной системы измерений для измерения напряжения электрического тока. Ампер — это единица измерения в международной системе измерения силы тока.

Следовательно, мы должны знать:

Какая разница между напряжением и силой тока?

Сила электрического тока — это электрический заряд (количество электронов), циркулирующий в проводнике за единицу времени (в секунду).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *