Защита блока питания от кз и перегрузок: Защита от КЗ для блока питания своими руками

Содержание

Защита от КЗ для блока питания своими руками

Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.

На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.

Схема защиты блока питания от короткого замыканияСхема защиты блока питания от короткого замыкания

Скачать схему защиты блока питания от короткого замыкания Скачать

Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.

Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.

Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.

Печатная плата устройства защиты блока питания от короткого замыкания.

Печатная плата защиты блока питания от короткого замыканияПечатная плата защиты блока питания от короткого замыкания

Скачать печатную плату устройства защиты блока питания от короткого замыкания Скачать

Посмотрим, как работает готовое устройство защиты блока питания от короткого замыкания. В дежурном состоянии после подачи питания, горит красный светодиод, нагрузка отключена.

Защита от КЗ для блока питания

Нажимаем кнопку и устройство перейдет в рабочий режим.

Защита от КЗ для блока питания

Загорелся зеленый светодиод, сигнализируя о подаче питания на нагрузку, в качестве нагрузки я использую обыкновенную 12 вольтовую лампочку.

Защита от КЗ для блока питания

С помощью отвертки замыкаю между собой центральный контакт с цоколем лампочки, получается короткое замыкание, мгновенно срабатывает защита от КЗ, нагрузка отключается, загорается красный светодиод своим светом сообщая о коротком замыкании.

Защита от КЗ для блока питания

Радиодетали для сборки

  • Реле SRD-12VDC-SL-C, можно использовать аналогичное на другое напряжение
  • Резисторы R1, R2 1K сопротивление подбирайте для каждого светодиода
  • Светодиоды 5 мм 2 шт. красный и зеленый
  • Кнопка любая без фиксации с нормально разомкнутыми контактами

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых
статьях!

Рекомендую посмотреть видеоролик о том, как сделать защиту от короткого замыкания для блока питания

cxema.org — Схема защиты блока питания и зарядных устройств


Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока.

Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.

Схема одновременно является защитой от переполюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.

Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Схема защиты блока питания, шунтСхема защиты блока питания, шунт

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.

Схема защиты блока питания, регулятор ограничения токаСхема защиты блока питания, регулятор ограничения тока

При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным.

Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.

Схема защиты блока питания, платаСхема защиты блока питания, плата

Схема защиты блока питания, платаСхема защиты блока питания, плата

Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

С уважением — АКА КАСЬЯН

Защита от переполюсовки и КЗ зарядного устройства, блока питания своими руками

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Как сделать защиту от переполюсовки для блока питания

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Реле, диодная развязка

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Работает схема

Работает схема

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

Работает схема

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Работает схема

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

Работает схема

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Работает схема

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

Работает схема

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Как сделать защиту от переполюсовки для блока питания

Вариант 2

Вариант 2

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

Принцип работы

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Принцип работы

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Вариант 3

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Предохранитель

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

Предохранитель

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Предохранитель

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Диод

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

автомагнитоле

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Как сделать защиту от переполюсовки для блока питания

Автор:  Эдуард Орлов –  

Прикрепленные файлы: СКАЧАТЬ.


 

Защита импульсных блоков питания от КЗ

Опубликовал admin | Дата 18 августа, 2019

Схема защиты импульсных блоков питания от превышения тока нагрузки

Все защитные схемы конкретного ИИП, имеющего на выходе несколько выходных напряжений, можно объединять под общим названием — комбинированные защиты. Т.к. срабатывание любой из этих защитных схем ведет к отключению всех питающих напряжений посредством воздействия на управляющую микросхему ИИП. Все выходные каналы ИИП можно условно, разделить на слаботочные и сильноточные. Необходимость раздельной защиты каждого из этих каналов объясняется тем, что чувствительность схемы защиты сильноточного канала недостаточна для обнаружения неисправности в слаботочной схеме.

В данной статье будет рассмотрена одна из классических и эффективных схем защиты для импульсных блоков питания с сильноточным выходом, реализованных на контроллере ТL494 или его аналогах.

Подробнее рассмотрим механизм защитного отключения в зависимости от максимальной ширины управляющего импульса. Суть защитного отключения заключаются в том, чтобы силовые транзисторы инвертора переставали переключаться и оставались бы в закрытом состоянии неограниченно долго при возникновении аварийной ситуации. Для того чтобы оба силовых транзистора инвертора оказались закрыты одновременно, на их базах должны отсутствовать управляющие импульсы. Источником управляющих импульсов является микросхема ТL494, поэтому для того чтобы отключить появление импульсов на выходах микросхемы необходимо заблокировать работу ее цифровой части. При этом оба выходных транзистора ее окажутся в закрытом состоянии и импульсы на выводах 8 и 11 или 9 и 10 будут отсутствовать. Амплитуда пилообразного напряжения составляет +3,2В.
Поэтому, если на вывод 4 ТL494 будет подан потенциал, превышающий +3.2В, то произойдет блокировка работы микросхемы ТL494. Однако необходимо отметить, что генератор пилообразного напряжения при этом не прекращает своей работы, т.е. несмотря на отсутствие выходных импульсов, пилообразное напряжение продолжает вырабатываться. Схема узла защиты показана на рисунке ниже.

Работа схемы защиты

Тр1 – трансформатор тока, R11 – нагрузка трансформатора, VD3 и 4 – выпрямительные диоды – это преобразователь длительности проходящих через первичную обмотку рабочих импульсов тока в пропорциональное напряжение на его выходе. Чем больше длительности рабочих импульсов, тем на большее положительное напряжение заряжается конденсатор С7. Преобразователь имеет двухполупериодную схему выпрямления со средней точкой, на которой появляются только положительные по знаку импульсы. Напряжение пропорциональное длительности рабочих импульсов с конденсатора С7 поступает на резистивный делитель R7 и R6. Вместо этого делителя можно поставить потенциометр со шкалой и при необходимости выставлять нужный ток защиты. Цепь, состоящая из резистора R5 и конденсатора С4 – это Т-образный фильтр, от емкости С4 также зависит время реакции защиты на внештатную ситуацию. Если выбрать этот конденсатор недостаточной емкости, то защита сработает раньше, чем закончатся все переходные процессы при включении блока питания. БП просто напросто не успеет включиться. Здесь нужен компромисс, чтобы блок питания стабильно включался, и чтобы время срабатывания защиты было как можно меньше.

Резистор R8 – подтягивающий резистор вывода 4 DD1 к общей шине схемы ИИП. R9 и С11 – цепь мягкого запуска. При включении ИИП на воде 14 контроллера появляется стабильное напряжение +5 вольт от внутреннего стабилизатора микросхемы. Начинается заряд конденсаторы С11 через резисторы R8,9R. На выводе 4 DD1 начинает плавно нарастать напряжение. По мере его нарастания увеличивается длительность рабочих импульсов. Диод VD1 служит для развязки формирующей цепочки от схемы защиты.

В рабочем состоянии блока питания в режиме номинального тока нагрузки напряжения с выхода фильтра R5, С4 не хватает для того, что бы открыть транзистор VT1. В таком режиме оба транзистора VT1 и VT2 закрыты и не влияют на работу микросхемы DD1. При увеличении тока нагрузки контроллер начнет увеличивать длительность выходных импульсов. Увеличение длительности рабочих импульсов мощных транзисторов VT3 и VT4 приводит к увеличению напряжения на базе транзистора VT1. Через открывающийся транзистор VT1 и резистор R2 начинает поступать открывающее отрицательное напряжение базу VT2. Процесс приобретает лавинообразный характер, в результате оба транзистора открываются и могут находиться в таком состоянии сколь угодно долго (транзисторный аналог тиристора). Через открытые транзистор VT2 на вывод 4 DD1 поступит напряжения превышающее +3,2В, что приведет к блокировке цифровой части контроллера. Оба его выходных транзистора окажутся в закрытом состоянии и на выходах 8,11 и 9,10 появятся статические потенциалы, которые не смогут передаваться на базы транзисторов VT3 и VT4, так как связь с ними происходит через согласующий трансформатор (на схеме не показан). Если ИИП имеет схему с запуском посредством самовозбуждения, то после закрытия мощных транзисторов пропадет и питание на контроллере и восстановить работоспособность блока питания можно, если его отключить и снова включить. Восстановить рабочее состояние ИИП с принудительным запуском можно, поставив кнопку рестарта, параллельно переходу база-эмиттер транзистора VT1.

Данная схема была проверена в четырех ИИП и показала прекрасные результаты. В качестве ТР1 можно использовать сердечники и каркасы к ним от энергосберегающих ламп. Смотрим фото. Но в данных сердечниках имеется конструктивный зазор на среднем керне, поэтому для трансформатора тока потребуется два одинаковых дросселя. На фото три показан самодельный трансформатор тока в ИИП.

Можно применить и ферритовые кольца. Как рассчитать трансформатор тока на ферритовом кольце можно посмотреть в статье «Расчет трансформатора тока»

Вторичная обмотка ТР1 содержит 120 х 2 витков провода диаметром 0,12 мм, мотается в два провода сразу. Вторичная обмотка содержит 2 витка провода – 0,8 или можно применить плоский жгут из нескольких проводов. Диоды VD3 и VD4 – КД522, 1N4148. VD1 – любой. Транзисторы 1 и 2 – КТ315 и КТ361, у меня стоят КТ209 и С945.

На этом все. Успехов. К.В.Ю.

Скачать статью

Скачать “Защита_импульсных_блоков_питания_от_КЗ” Защита_импульсных_блоков_питания_от_КЗ.rar – Загружено 229 раз – 163 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:437

Схемы электронных предохранителей для защиты от КЗ и перегрузки по току



Эффективные средства защиты источников питания от КЗ и перегрузки по току на
мощных полевых переключающих МОП-транзисторах.

Плавный пуск (Soft Start) — нужен ли он блоку питания с быстродействующей защитой.






На странице (ссылка на страницу) мы познакомились с несколькими простыми схемами электронных
предохранителей
, предназначенных для работы в составе блоков питания. Главное назначение этих устройств — защита
как самих БП, так и подключаемых к ним узлов от короткого замыкания (КЗ) или превышения тока, которое может возникнуть
в них в силу той или иной причины.

Основными преимуществами таких устройств защиты (по сравнению с плавкими предохранителями) являются возможность введения регулировки тока
срабатывания и высокое быстродействие, позволяющее в большинстве случаев предотвратить выход из строя электронного оборудования.

Основной недостаток, как не странно, тот же самый — высокое быстродействие, приводящее к ложным срабатываниям в начальный момент
включения источника питания при наличии в нагрузке значительной ёмкостной составляющей (например, могучих электролитов, часто
являющихся обязательным атрибутом многих усилителей мощности).

Перемещение этих электролитов с выхода на вход электронного предохранителя во многих случаях приводит к положительному результату,
однако, если мы хотим поиметь универсальный блок питания с возможностью работы с различными устройствами, в том числе и с электролитами
на борту, приходится озадачиваться и таким прибамбасом, как плавный пуск (или Soft Start по буржуйски).

Давайте более подробно рассмотрим две, на мой взгляд, наиболее удачные схемы электронных предохранителей, бегло описанных на странице
по ссылке.

Схема, приведённая на Рис.1, относится к устройствам с резистивным датчиком тока, позволяющим заранее произвести точный расчёт номиналов
элементов, а также ввести плавную (посредством переменного резистора) или ступенчатую (посредством переключателя) регулировку тока
срабатывания.
Электронный предохранитель - схема защиты от КЗ и перегрузки по току


Рис.1 Схема электронного предохранителя для защиты от КЗ и перегрузки по току

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания ~ 0,6В. Ток срабатывания
этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле:
R4 (Ом) ≈ 0,6/Iср (А).

При желании ввести в электронный предохранитель плавную регулировку тока срабатывания, R4 следует заменить на цепочку из
последовательно соединённых: постоянного резистора, рассчитанного на максимальный ток, и проволочного переменного номиналом, рассчитанным
под минимальный ток срабатывания.

Суммарная мощность, рассеиваемая на этих резисторах при максимальном токе, равна
Р(Вт) ≈ 0,6 * Iср (А).

При включении блока питания и условии отсутствия в нагрузке недопустимых токов предохранитель автоматически устанавливается в рабочее
(открытое) состояние. При превышении тока напряжение на R4 достигает уровня открывания Т1 и транзисторный эквивалент тиристора (Т1, Т2)
срабатывает и притягивает уровень напряжения на затворе Т3 к напряжению на его истоке, что приводит к закрыванию полевика.


Для возврата электронного предохранителя в рабочее (открытое) состояние необходимо: либо выключить и снова включить источник питания,
дождавшись, когда напряжение на его выходе упадёт до нуля, либо нажать кнопку сброса S1.

Если входное напряжение, подаваемое на предохранитель, не превышает 20В, то цепочку R1 D1 допустимо исключить, а нижний вывод R3
подключить к минусу.

Применение источника тока на полевом транзисторе Т4 обусловлено желанием обеспечить ток через светодиод Led1 (индикатор
наличия выходного напряжения) на постоянном уровне, независимо от приложенного к предохранителю напряжения. Если электронный предохранитель
предполагается использовать при фиксированном напряжении питания, то для простоты этот транзистор можно заменить резистором.

Посредством несложных манипуляций в приведённое выше устройство можно добавить функцию плавный пуск (Soft Start), позволяющую
электронному предохранителю избегать ложных срабатываний в начальный момент включения источника питания при наличии в нагрузке
электролитических конденсаторов значительной ёмкости. Рассмотрим получившуюся схему на Рис.2.
Электронный предохранитель - схема защиты от КЗ и перегрузки по току


Рис.2 Электронный предохранителя для защиты от КЗ и перегрузки (положительная полярность)

В начальный момент включения источника питания конденсатор С3 замыкает цепь затвора полевого транзистора Т3 на его исток, заставляя
его находиться в закрытом состоянии. По мере заряда конденсатора напряжение на нём (а соответственно и разница потенциалов между истоком
и затвором) плавно растёт, что приводит к постепенному открыванию полевика. Длительность данного переходного процесса (от полного закрытия
до полного открывания) составляет 15…20 миллисекунд, чего вполне достаточно для значительного снижения стартовых токов заряда даже
очень ёмких электролитов, расположенных в нагрузке.

Для того чтобы после срабатывания защиты вернуть предохранитель в рабочее состояние и сохранить функцию плавного пуска, необходимо не
только сбросить транзисторный аналог тиристора, но и дождаться полного разряда конденсатора С3.
В связи с этим кнопка сброса перенесена в цепь питания и выполняет функцию обесточивания всего устройства, а дополнительный резистор
R7 ускоряет разряд С3 до комфортных 0,3…0,4 секунд.

Диод D3 выполняет функцию устранения выбросов отрицательной полярности, возникающих на конденсаторе С3 при размыкании S1,
а D2 — функцию отсечения этого конденсатора от цепи затвора при срабатывании защиты, что позволяет обойтись без потери быстродействия
предохранителя. Диоды могут быть любыми с допустимыми напряжениями, превышающими величину напряжения питания.

Включение датчика тока и коммутирующего транзистора в цепь питания (в нашем случае — в положительную цепь), а не земляную шину позволяет
с лёгкостью осуществить релизацию защитного устройства для двуполярных источников. Приведём схему предохранителя и для отрицательной
шины двуполяного блока питания.
Схема электронного предохранителя для защиты от КЗ и перегрузки по току


Рис.3 Электронный предохранителя для защиты от КЗ и перегрузки (отрицательная полярность)

Всем хороши эти устройства защиты с резистивными датчиками, особенно для цепей с умеренными токами (до 10А).
Однако если возникает необходимость предохранять устройства, для которых рабочими являются токи в несколько десятков, а то и сотен
ампер, то мощность, рассеиваемая на резистивном датчике, может оказаться чрезмерно высокой. Так, при максимальном токе в нагрузке равном
20А, на резисторе рассеется около 12Вт, а при токе 100А — 60Вт.


Уменьшать уровень срабатывания электронного предохранителя (скажем до 100мВ) посредством введения в схему чувствительного
элемента ОУ или компаратора — не самая хорошая затея, ввиду того, что помехи, гуляющие по шинам земли и питания, в сильноточных цепях могут
превышать эти пресловутые 100мВ. В таких ситуациях приходится искать другие решения.


Датчик магнитного поля — геркон и несколько сантиметров толстого провода могут стать выходом из положения в источниках питания с
максимальными токами вплоть до десятков и сотен ампер.

Датчик тока на герконе

Рис.4 Датчик тока на герконе

При прохождении тока через обмотку, намотанную поверх датчика (Рис.4), внутри неё возникает магнитное поле, которое приводит к замыканию
контактов геркона.

Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение
на любой интересующий нас ток.

Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим
ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть
до 85…90 А.

К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1…2
миллисекунд.

Всё, что теперь остаётся — это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.
Электронный предохранитель с датчиком тока на герконе


Рис.5 Электронный предохранителя для защиты от КЗ и перегрузки с датчиком тока на герконе

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройств от перегрузки в широком диапазоне
входных напряжений (9…80 вольт) без изменения номиналов элементов.

Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на
базу транзистора Т2 короткого положительного или отрицательного импульса.

Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс
положительной полярности.

Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.

Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя.
Если транзистор не удовлетворяет токовым и мощностным характеристикам — допустимо использовать параллельное включение нескольких
полупроводников.


Цепочка D1 R6 защищает полевик от недопустимых уровней Uзи при входных напряжениях свыше 20В. Если предохранитель предполагается использовать
с меньшими подаваемыми напряжениями, то эту цепочку вполне допустимо исключить.












 

Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов. 

Схема защиты блока питания

 Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.
Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.
Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.

Схема защиты блока питания, регулятор ограничения тока

Схема защиты блока питания, регулятор ограничения тока

 ~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.

Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.

Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.

Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.

Собираем схему индикатора.

Схема защиты источника питания от перегрузки на КУ202

Добавил: Chip,Дата: 06 Фев 2015

Схема защиты источника питания от перегрузки на КУ202

Для защиты блока питания при конструировании различных схем рекомендуется на выход БП добавить узел защиты от перегрузки по току. Простая схема устройства построена с применением тиристора в качестве управляющего элемента защиты по напряжению.

Пока напряжение питания на входе находится в пределах нормы, стабилитрон и тиристор закрыты, ток протекает в нагрузку. При превышении напряжения питания свыше 15,2В, открывается стабилитрон, и вслед за ним тиристор, так как между его катодом и управляющим электродом присутствует разность потенциалов, достаточная для его отпирания. Подключенный параллельно выходу источника питания тиристор VS1 при перегрузке обрывает плавкий предохранитель в течение нескольких микросекунд, если выходное напряжение окажется свыше допустимого. Порог открывания тиристора, а именно, срабатывания защиты, зависит от технических данных стабилитрона. При перегорании предохранителя включится пьезоизлучатель звука со встроенным генератором, который просигнализирует о внешней неисправности, который, так же, индицирует о возможном коротком замыкании в нагрузке. Сигнализатор будет звучать до тех пор, пока не будет отключено общее питание или устройство нагрузки.

Видео работы схемы защиты источника питания


Источник:chipdip.ru

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Одна из причин неисправности UPS, блоков питания мониторов, телевизоров
  • Если у Вас UPS (бесперебойник), телевизор или монитор начинает самопроизвольно выключаться, на экране видны помехи, меняется размер растра и т.п., то помимо описанных причин в этой статье часто встречается и такая как пропадание контакта в разъёмах и элементов на плате. Подробнее…

  • Три простых варианта блоков питания
  • Рассмотрим три простых варианта источников питания. Собрать их под силу даже начинающим радиолюбителям. Блоки питания можно приспособить для питания различных радиосхем, устройств  разной мощности и разной полярности. В зависимости какое устройство, схему вам нужно запитать выбираем варианты БП и IC в них.

    Подробнее…

  • Солнечные батареи своими руками
  • САМОДЕЛЬНЫЙ СОЛНЕЧНЫЙ КОЛЛЕКТОР

    Вчера обсуждал с родителями жены планы по строительству бани на даче. Уломал их отказаться от идеи поставить на крыше бочку для нагрева солнцем воды для летнего душа.

    Бочка будет стоять на чердаке, а воду будет греть солнечный коллектор. Делать его буду сам из подручного хлама. План пока примерно такой: Подробнее…

Популярность: 21 877 просм.

Вы можете следить
за комментариями к этой записи через RSS 2.0.
Вы можете оставить свой комментарий, пинг пока закрыт.

Защита от перегрузки или короткого замыкания? Как защитить вашу конструкцию от обеих опасностей

В автоматических выключателях есть четыре варианта кривых задержки: тепловые, термомагнитные, гидравлически-магнитные и магнитные. Каждый из них имеет свой профиль отключения в зависимости от времени и тока, и каждый имеет различные механические характеристики.

Термовыключатели состоят из термочувствительной биметаллической ленты или диска. Этот тип технологии имеет более медленную характеристическую кривую, которая различает безопасные временные перенапряжения и длительные перегрузки.Он подходит для механизмов или транспортных средств, в которых пуск электродвигателей, трансформаторов и соленоидов сопровождается высокими пусковыми токами. Существуют тепловые выключатели с термоэлементами, которые обеспечивают более быстрое переключение. Они представляют собой недорогое решение для защиты бытовых приборов и печатных плат, среди прочего.

Термомагнитные выключатели сочетают в себе преимущества теплового и магнитного выключателя: они имеют тепловую задержку, которая предотвращает ложное срабатывание, вызванное нормальным пусковым током, и магнитный соленоид для быстрого отклика при более высоких токах (рис. 2).И стандартные тепловые, и магнитные выключатели чувствительны к температуре окружающей среды. Однако их можно выбрать для правильной работы в широком диапазоне температур.

Магнитный выключатель можно комбинировать с гидравлической задержкой, чтобы сделать его устойчивым к скачкам тока. Эти гидравлические магнитные прерыватели аналогичны термомагнитным в том, что у них есть двухступенчатая кривая отклика — они обеспечивают задержку при нормальных максимальных токах, но быстро срабатывают при коротких замыканиях. Многие гидравлические магнитные выключатели доступны с набором кривых задержки для конкретных применений.На гидромагнитные выключатели не влияет температура окружающей среды, но они, как правило, чувствительны к положению. Эти прерыватели следует устанавливать в вертикальной плоскости, чтобы гравитация не влияла на движение соленоида. При установке в другом положении может потребоваться снижение номинальных характеристик.

Автоматические выключатели с чистым магнитом работают через соленоид и срабатывают почти мгновенно, как только достигается пороговый ток. Этот тип кривой задержки подходит для чувствительного оборудования, такого как телекоммуникационное оборудование, печатные платы и импульсное отключение в приложениях управления.

.Схема защиты от короткого замыкания

Короткое замыкание — это непреднамеренное соединение между двумя клеммами, которые подают питание на нагрузку. Это может произойти как в цепи переменного тока, так и в цепи постоянного тока, если это источник переменного тока, то короткое замыкание может привести к отключению источника питания всей области, но есть предохранители и схемы защиты от перегрузки на многих уровнях, от электростанции до дома. А если это источник постоянного тока, например аккумулятор, он может нагреть аккумулятор, и аккумулятор очень быстро разрядится.В некоторых случаях аккумулятор может взорваться. Существует множество способов защиты цепи от короткого замыкания, и для защиты от перегрузки доступно множество типов предохранителей.

Мы собираемся разработать и изучить простую схему защиты от короткого замыкания низкого напряжения для постоянного напряжения . Схема разработана с целью безопасной работы схемы микроконтроллера и может защитить ее от повреждения из-за короткого замыкания в другой части схемы.

Необходимые компоненты

  • СК100Б Транзистор ПНП — 1 шт.
  • BC547B Транзистор NPN — 1 шт.
  • Резистор 1 кОм — 1 шт.
  • Резистор 10 кОм — 1 шт.
  • Резистор 330 Ом — 2 шт.
  • Резистор 470 Ом — 1 шт.
  • Источник питания 6 В постоянного тока — 1 шт.
  • Макетная плата — 1 шт.
  • Соединительные провода — согласно требованию

SK100B PNP Транзистор

SK100B PNP Transistor

Начиная с выемки транзистора — эмиттер, середина — база, а последняя — коллектор

  • Излучатель — E
  • База — B
  • Коллектор — C

BC547B Транзистор NPN

Схема защиты от короткого замыкания

Типичный пример короткого замыкания — это когда положительная и отрицательная клеммы батареи соединены вместе с проводом с низким сопротивлением, например, проводом.В этом состоянии аккумулятор может загореться и даже взорваться. Так часто бывает с мобильными батареями в мобильных устройствах.

Чтобы избежать этого состояния короткого замыкания, используется схема защиты от короткого замыкания . Схема защиты от короткого замыкания отклонит ток или прервет контакт между цепью и источником питания.

Иногда при использовании неисправной бытовой техники, например, духовки, утюга и т. Д., Происходит сбой питания с внезапной искрой.Причина этого в том, что где-то в неисправном приборе протекает избыточный ток. Это может привести к поражению электрическим током или возгоранию дома, если он не защищен. Поэтому во избежание такого повреждения используется предохранитель или автоматический выключатель . В таком состоянии автоматический выключатель или предохранитель отключает основное питание в доме. Цепь предохранительного выключателя также представляет собой схему защиты от короткого замыкания , , в которой используется провод с низким сопротивлением, который плавится и отключает основной источник питания в доме всякий раз, когда через него проходит избыточный ток.

Итак, здесь мы собираемся изучить и спроектировать схему, чтобы избежать повреждения из-за короткого замыкания в ней.

Схема

Short Circuit Protection Block Diagram

Short-Circuit Protection Circuit Diagram

Работа цепи защиты от короткого замыкания

Выше показана простая схема защиты от короткого замыкания постоянного тока с низким энергопотреблением, которая состоит из двух транзисторных схем, одна из которых представляет собой транзисторную схему BC547 NPN, а другая — транзисторную схему SK100B PNP.Вход подается на схему с помощью источника питания 5 В постоянного тока, который может быть обеспечен либо батареей, либо трансформатором.

Short Circuit Protection Circuit in action

Работа схемы проста, когда горит зеленый светодиод D1, это означает, что схема работает нормально и риск повреждения отсутствует. Красный светодиод D2 должен гореть только при коротком замыкании.

При включении источника питания транзистор Q1 смещается и начинает проводить ток, а светодиод D1 загорается.В это время красный светодиод D2 не горит из-за отсутствия короткого замыкания.

Свечение зеленого светодиода D1 также указывает на то, что напряжение питания и выходное напряжение примерно равны.

В нашей схеме стимуляции мы сгенерировали «короткое замыкание» с помощью переключателя на выходе. Когда происходит «короткое замыкание», выходное напряжение падает до 0 В и Q1 перестает проводить, так как его базовое напряжение равно 0 В. Транзистор Q2 также перестает проводить, поскольку напряжение на его коллекторе также упало до 0 В.

Итак, теперь ток начинает течь через КРАСНЫЙ светодиод D2 и проходит через землю по короткому замыканию (через переключатель).Это приводит к тому, что красный светодиод D2 начинает проводить, поскольку он смещен в прямом направлении, и указывает на то, что было обнаружено короткое замыкание, и ток отводится через красный светодиод D2 вместо повреждения всей цепи.

,

Типы и применения реле максимального тока (часть 1)

Types and Applications Of Overcurrent Relay Types and Applications Of Overcurrent Relay Типы и применения реле максимального тока

Индекс

Виды защиты

Схемы защиты можно разделить на две основные группы:

  1. Схемы агрегатов
  2. Безединичные схемы

1. Тип устройства Защита

Схемы типа агрегата защищают определенную область системы, например, трансформатор, линию передачи, генератор или шину.

Схема защиты устройства основана на Законе тока Кирхгофа — сумма токов, входящих в зону системы, должна быть равна нулю.

Любое отклонение от этого должно указывать на ненормальный путь тока . В этих схемах полностью игнорируются эффекты любых помех или условий эксплуатации за пределами интересующей области, и защита должна быть спроектирована так, чтобы быть стабильной выше максимально возможного тока короткого замыкания, который может протекать через защищаемую область.

Вернуться к оглавлению ↑

2.Защита без единиц

Необъединенные схемы, хотя и предназначены для защиты определенных территорий, не имеют фиксированных границ . Помимо защиты своих собственных обозначенных участков, защитные зоны могут накладываться на другие участки. Хотя это может быть очень полезно для целей резервного копирования, может существовать тенденция к изолированию слишком большой области, если неисправность обнаруживается различными неединичными схемами.

Самая простая из этих схем измеряет ток и включает обратнозависимую временную характеристику в работу защиты, чтобы позволить защите, находящейся ближе к месту повреждения, сработать первой.

Система защиты безблочного типа включает следующие схемы:

  1. Максимальная токовая защита с временной шкалой
  2. Максимальная токовая защита с градациями по току
  3. Дистанционная или импедансная защита

Вернуться к оглавлению ↑

2.1 Максимальная токовая защита

Это самый простой из способов защиты линии и поэтому широко используется.

Свое применение он обязан тому факту, что в случае неисправности ток возрастет до значения, в несколько раз превышающего максимальный ток нагрузки.У него есть ограничение в том, что его можно применять только к простому и недорогому оборудованию.

Вернуться к оглавлению ↑

2.2 Защита от замыканий на землю

Обычно используется набор из двух или трех реле максимального тока и отдельное реле максимального тока для защиты одной линии от замыкания на землю. Предусмотренное отдельное реле защиты от замыканий на землю делает защиту от замыканий на землю более быстрой и чувствительной.

Ток замыкания на землю всегда по величине меньше тока замыкания фазы.

Следовательно, реле, подключенное для защиты от замыкания на землю, отличается от реле для защиты от замыкания на землю.

Вернуться к оглавлению ↑

Различные типы неисправностей линии

Тип неисправности Работа реле
1 Замыкание фазы на землю (замыкание на землю) Реле замыкания на землю
2 Ошибка между фазами Не с землей Реле максимального тока связанных фаз
3 Двойная фаза на замыкание на землю Реле максимального тока и защиты от замыканий на землю

Вернуться к индексу ↑

Реле максимального тока Назначение и характеристики

Реле, которое срабатывает или срабатывает, когда его ток превышает заданное значение (значение настройки), называется Реле максимального тока .

Защита от перегрузки по току защищает системы электроснабжения от чрезмерных токов , которые вызываются короткими замыканиями, замыканиями на землю и т. Д. Реле максимального тока можно использовать для защиты практически любых элементов энергосистемы, то есть линий передачи, трансформаторов, генераторов или двигателей.

Для защиты фидера может быть более одного реле максимального тока для защиты различных участков фидера. Эти реле максимального тока должны координироваться друг с другом, чтобы в первую очередь срабатывала ближайшая неисправность.

Использование времени, тока и комбинации времени и тока — это три способа различения соседних реле максимального тока.

Реле максимального тока обеспечивает защиту от:

Максимальный ток включает защиту от короткого замыкания, а короткие замыкания могут быть:

  1. Обрыв фазы
  2. Замыкания на землю
  3. Неисправности обмотки

Токи короткого замыкания обычно составляют в несколько раз (от 5 до 20) тока полной нагрузки . Следовательно, при коротких замыканиях всегда желательно быстрое устранение неисправностей.

Вернуться к оглавлению ↑

Основное требование защиты от сверхтоков

Защита не должна срабатывать при пусковых токах, допустимой перегрузке по току, скачках тока. Для этого предусмотрена временная задержка (в случае обратных реле).

Защита должна быть согласована с соседней максимальной токовой защитой.

Реле максимального тока является основным элементом максимальной токовой защиты.

Вернуться к оглавлению ↑

Назначение максимальной токовой защиты

Это наиболее важные цели реле максимального тока:

  • Обнаружение ненормальных условий
  • Изолировать неисправную часть системы
  • Скорость Быстрая работа для минимизации повреждений и опасности
  • Дискриминация Изолируйте только неисправный участок
  • Надежность / надежность
  • Безопасность / стабильность
  • Стоимость защиты / от стоимости потенциальных опасностей

Вернуться к оглавлению ↑

Номинальные характеристики реле максимального тока

Для правильной работы устройства защиты от сверхтоков необходимо правильно выбрать номиналы устройства защиты от сверхтоков.Эти параметры включают напряжение, ток и отключающую способность.

Если рейтинг прерывания выбран неправильно, существует серьезная опасность для оборудования и персонала.

Ограничение тока можно рассматривать как еще один номинал устройства защиты от сверхтока, хотя не все устройства защиты от сверхтока должны иметь эту характеристику

Номинальное напряжение: Номинальное напряжение устройства защиты от перегрузки по току должно быть, по крайней мере, равно или превышать напряжение цепи.Номинальное значение устройства защиты от сверхтоков может быть выше, чем напряжение системы, но никогда не может быть ниже.

Номинальный ток: Номинальный ток устройства защиты от перегрузки по току обычно не должен превышать допустимую нагрузку по току проводников. Как правило, номинальный ток устройства защиты от перегрузки по току выбирается равным 125% от постоянного тока нагрузки.

Вернуться к оглавлению ↑

Разница между защитой от перегрузки по току и защиты от перегрузки

Максимальная токовая защита защищает от чрезмерных токов или токов, превышающих допустимые значения номинального тока , которые возникают в результате коротких замыканий, замыканий на землю и условий перегрузки.

При этом защита от перегрузки защищает от ситуации, когда ток перегрузки вызывает перегрев защищаемого оборудования .

Защита от перегрузки по току — это более широкая концепция, поэтому защиту от перегрузки можно рассматривать как подмножество защиты от перегрузки по току.

Реле максимального тока может использоваться в качестве защиты от перегрузки (тепловой) при защите резистивных нагрузок и т. Д., Однако для нагрузок двигателя реле максимального тока не может служить в качестве защиты от перегрузки. Реле перегрузки обычно имеют более длительную уставку времени, чем реле максимального тока.

Вернуться к оглавлению ↑

Типы реле максимального тока

Это типы реле максимального тока:

  1. Реле мгновенного максимального тока (определение тока)
  2. Задать реле максимального тока с выдержкой времени
  3. Реле максимального тока с обратнозависимой выдержкой времени (реле IDMT)
    • Умеренно обратная
    • Очень обратное время
    • Чрезвычайно инверсный
  4. Реле максимального тока

Вернуться к оглавлению ↑

1.Реле мгновенного максимального тока (определение тока)

Реле заданного тока срабатывает мгновенно, когда ток достигает заданного значения.

Instantaneous Overcurrent Relay - Definite Current Instantaneous Overcurrent Relay - Definite Current Реле мгновенного максимального тока — определенный ток

  • Срабатывает через определенное время, когда ток превышает значение срабатывания.
  • Критерием его работы является только величина тока (без выдержки времени).
  • Время работы постоянно.
  • Нет преднамеренной задержки по времени.
  • Координация реле постоянного тока основана на том факте, что ток повреждения изменяется в зависимости от положения повреждения из-за разницы в импедансе между повреждением и источником
  • Реле, расположенное дальше всего от источника, срабатывает при низком значении тока
  • Рабочие токи других реле постепенно увеличиваются по мере движения к источнику.
  • Работает за 0,1 с или меньше

Приложение: Этот тип применяется к исходящим фидерам.

Вернуться к оглавлению ↑

2. Реле максимального тока с независимой выдержкой времени

В этом типе для работы (срабатывания) должны выполняться два условия: ток должен превышать установленное значение, а неисправность должна быть непрерывной, по крайней мере, в течение времени, равного настройке времени реле.

Definite time of overcurrent relay Definite time of overcurrent relay Реле максимального тока с независимой выдержкой времени

Современные реле могут содержать более одной ступени защиты, каждая ступень включает собственную уставку тока и времени.

  1. Для срабатывания реле максимального тока с независимой выдержкой времени время срабатывания постоянно
  2. Его работа не зависит от величины тока, превышающей значение срабатывания.
  3. Имеет настройки срабатывания реле и шкалы времени, желаемое время задержки может быть установлено с помощью специального механизма задержки времени.
  4. Легко координировать.
  5. Постоянное время отключения, не зависящее от изменения подачи и места повреждения.
Недостаток реле:
  1. Непрерывность питания не может поддерживаться на стороне нагрузки в случае неисправности.
  2. Обеспечивается запаздывание, что нежелательно при коротких замыканиях.
  3. Трудно координировать и требует внесения изменений с добавлением нагрузки.
  4. Не подходит для линий передачи на большие расстояния, где быстрое устранение неисправностей необходимо для стабильности.
  5. Реле

  6. трудно различить токи повреждения в той или иной точке, когда полное сопротивление между этими точками невелико, что приводит к плохой селективности.
Приложение:

Реле максимального тока с независимой выдержкой времени используется как:

  1. Резервная защита дистанционных реле ЛЭП с выдержкой времени.
  2. Резервная защита дифференциального реле силового трансформатора с выдержкой времени.
  3. Основная защита отходящих фидеров и шинных соединителей с регулируемой задержкой времени.

Вернуться к оглавлению ↑

3. Реле максимального тока с обратнозависимой выдержкой времени (реле IDMT)

В реле этого типа время срабатывания обратно пропорционально току. Значит, большой ток сработает быстрее реле максимального тока, чем более низкий. Существуют стандартные обратные, очень обратные и крайне обратные типы.

Дискриминация по «времени» и «течению». Время срабатывания реле обратно пропорционально току повреждения.

Реле

с обратнозависимой выдержкой времени также называют реле с обратнозависимой выдержкой времени (IDMT).

Inverse Definite Minimum Time (IDMT) Inverse Definite Minimum Time (IDMT) Обратное определенное минимальное время (IDMT)

Время срабатывания реле максимального тока можно увеличить (сделать медленнее) путем регулировки «настройки шкалы времени». Самая низкая установка шкалы времени (самое быстрое время работы) обычно составляет 0,5, а самая медленная — 10.

  • Работает, когда ток превышает допустимое значение.
  • Время срабатывания зависит от силы тока.
  • Дает характеристики с обратнозависимой выдержкой времени при более низких значениях тока короткого замыкания и характеристики с независимой выдержкой времени при более высоких значениях
  • Обратная характеристика получается, если значение множителя установки заглушки ниже 10, для значений между 10 и 20 характеристики имеют тенденцию к определенным временным характеристикам.
  • Широко используется для защиты распределительных линий.

В зависимости от обратности он бывает трех различных типов:

Inverse types Inverse types Обратные типы

Вернуться к оглавлению ↑

3.1. Нормальное реле максимального тока с обратнозависимой выдержкой времени

Точность времени работы может составлять от 5 до 7,5% от номинального времени работы, как указано в соответствующих нормах. Неопределенность времени работы и необходимого времени работы может потребовать допуска от 0,4 до 0,5 секунды.

Используется, когда ток повреждения зависит от генерации неисправности , а не от местоположения неисправности.

Нормальное обратнозависимое реле максимального тока — это относительно небольшое изменение во времени на единицу изменения тока.

Заявка:

Наиболее часто используется в электрических и промышленных сетях. особенно применимо, когда величина неисправности в основном зависит от генерирующей мощности системы во время неисправности.

Вернуться к оглавлению ↑

3.2. Реле максимального тока с очень обратнозависимой выдержкой времени
  • Дает больше обратных характеристик, чем у IDMT.
  • Используется при уменьшении тока короткого замыкания по мере увеличения расстояния от источника.
  • Особенно эффективны при замыканиях на землю из-за их крутых характеристик.
  • Подходит, если происходит существенное снижение тока повреждения по мере увеличения расстояния до источника питания.
  • Реле максимального тока с очень обратной зависимостью особенно подходят, если ток короткого замыкания быстро падает с удалением от подстанции.
  • Градуировочная граница может быть уменьшена до значения в диапазоне от 0.От 3 до 0,4 секунды, когда используются реле максимального тока с очень инверсной характеристикой.
  • Используется, когда ток повреждения зависит от места повреждения.
  • Используется, когда ток сбоя не зависит от нормальных изменений генерирующей мощности.

Вернуться к оглавлению ↑

3.3. Реле максимального тока с очень обратнозависимой выдержкой времени
  • У него больше обратных характеристик, чем у IDMT и реле максимального тока с очень обратной зависимостью.
  • Подходит для защиты машин от перегрева.
  • Время срабатывания реле максимальной токовой защиты с выдержкой времени с чрезвычайно обратной зависимостью времени от тока приблизительно обратно пропорционально квадрату тока
  • Использование реле максимальной токовой защиты с максимальной инверсией позволяет использовать короткую временную задержку, несмотря на высокие токи включения.
  • Используется, когда ток повреждения зависит от места повреждения
  • Используется, когда ток повреждения не зависит от нормальных изменений генерирующей мощности.

Заявка:

  • Предназначен для защиты распределительных фидеров с пиковыми токами при включении (холодильники, насосы, водонагреватели и т. Д.).
  • Особенно подходит для выравнивания и согласования с предохранителями и замыкающими устройствами
  • Для защиты генераторов переменного тока, трансформаторов. Дорогие кабели и др.

Вернуться к оглавлению ↑

3.4. Реле максимальной токовой защиты с длительным выдерживанием времени

Основное применение реле максимального тока с выдержкой времени — это резервная защита от замыканий на землю.

4. Направленное реле максимального тока

Если система питания не радиальная (источник на одной стороне линии), реле максимального тока может не обеспечить адекватную защиту.Этот тип реле срабатывает в направлении протекания тока и блокирует в обратном направлении.

Для его работы должны выполняться три условия: величина тока, время задержки и направленность. Направленность тока можно определить с помощью напряжения в качестве ориентира направления.

Вернуться к оглавлению ↑

Применение реле максимального тока

Защита двигателя:

  • Применяется против перегрузок и коротких замыканий в обмотках статора двигателя.
  • Мгновенная и обратнозависимая фаза перегрузки по току и земля
  • Реле максимального тока для двигателей мощностью более 1000 кВт.

Защита трансформатора:

  • Используется только тогда, когда стоимость реле максимального тока не оправдана.
  • Также в местах расположения силовых трансформаторов для резервной защиты от внешних повреждений.

Линия защиты:

  • На некоторых подсистемах передачи, где стоимость ретрансляции на расстоянии не может быть оправдана.
  • первичная защита от замыканий на землю на большинстве линий электропередачи, где дистанционные реле используются для замыкания фаз.
  • Для резервной защиты от земли на большинстве линий, имеющих контрольное реле для первичной защиты.

Распределительная защита:

Реле максимального тока очень хорошо подходит для защиты распределительной системы по следующим причинам:

  • Это в принципе просто и недорого.
  • Очень часто реле не обязательно должны быть направленными и, следовательно, не требуется питание PT.
  • Можно использовать комплект из двух реле O / C для защиты от межфазных замыканий и отдельного реле максимального тока для замыканий на землю.

Вернуться к оглавлению ↑

,

Защита электрооборудования от короткого замыкания, перегрузки по току и перегрузки

Все электрическое оборудование имеет номинальную мощность. Это называется перегрузкой, когда они превышают номинальную мощность, а защита до состояния называется защитой от перегрузки. Защита для предотвращения внутреннего короткого замыкания электрического оборудования называется защитой от короткого замыкания, а защита от нулевого давления также называется защитой от отсутствия напряжения. При сбое питания цепь с указанными выше функциями автоматически останавливается, и электрооборудование не запускается автоматически при подаче питания в следующий раз.Цель этой функции состоит в том, чтобы не дать обслуживающему персоналу забыть об отключении источника питания при сбое питания, а электрооборудование будет работать автоматически в следующий раз, когда есть напряжение, и, таким образом, вызвать несчастные случаи. Эту функцию выполняет схема, управляемая генеральным подрядчиком.

Защита от короткого замыкания
Когда электрический прибор или изоляция проводки в электрической цепи управления сталкиваются с повреждениями, коротким замыканием нагрузки или ошибками в проводке, возникают короткие проблемы.Переходный ток короткого замыкания, генерируемый при коротком замыкании, более чем в 10–10 раз превышает номинальный ток. Сильная электродинамическая сила электрического оборудования или распределительной линии из-за тока короткого замыкания может повредить, вызвать дугу и даже вызвать пожар.
Защита от короткого замыкания требует отключения питания через короткое время после коротких неисправностей. Обычный метод — подключить предохранитель или автоматический выключатель низкого напряжения. Ток срабатывания цепи низкого напряжения в 1,2 раза превышает пусковой ток электродвигателя.

Защита от перегрузки по току
Под перегрузкой по току понимается рабочее состояние электродвигателя или элемента электрооборудования, превышающее номинальный ток. Перегрузка по току обычно меньше тока короткого замыкания и в 6 раз превышает номинальный ток. Возможность перегрузки по току в электрическом токе больше, чем короткого замыкания, особенно когда электродвигатель включается и часто имеет положительную и отрицательную инверсию. В условиях перегрузки по току, если значение тока может быть прямо перед максимально допустимым повышением температуры, элементы электрических устройств все еще могут работать нормально, но ударный ток, вызванный перегрузкой по току, повредит электродвигатель, а генерируемый мгновенный электромагнитный крутящий момент повредит механические компоненты трансмиссии.Таким образом, необходимо отключить питание.
Защита от перегрузки по току часто реализуется через реле максимального тока. При подключении катушки реле максимального тока к защищаемой цепи, когда ток достигает заданного значения, срабатывает реле максимального тока. А нормально замкнутый контакт подключается к ветви, где катушка контактора должна отключать катушку контактора. Затем отключите главный контакт контактора в главной цепи, чтобы вовремя выключить электродвигатель.

Защита от перегрузки
Под перегрузкой понимается рабочее состояние, когда рабочий ток электродвигателя превышает номинальный, но меньше 1.5-кратный номинальный ток. И рабочее состояние находится в пределах рабочего состояния сверхтока. Если электродвигатель длительное время находится в режиме перегрузки, повышение температуры обмотки превысит допустимое значение, что приведет к старению и повреждению изоляции. Защита от перегрузки не требует мгновенного срабатывания из-за воздействия кратковременного ударного тока электродвигателя или тока короткого замыкания, поэтому тепловое реле обычно используется в качестве элемента защиты от перегрузки.
Когда через тепловое реле проходит ток, в 6 раз превышающий номинальный, необходимо подождать 5 секунд перед срабатыванием. До срабатывания теплового реле нагревательные элементы теплового реле могли перегореть. Следовательно, при использовании теплового реле для защиты от перегрузки одновременно должны быть установлены устройства защиты от короткого замыкания, такие как предохранитель или автоматический выключатель низкого напряжения.
Купите на ATO.com устройство защиты от перенапряжения, реле или автоматический выключатель, чтобы защитить свое электрическое устройство.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *