Блок питания мощный регулируемый: Мощный регулируемый блок питания своими руками схема | Tool Electric

Содержание

Как сделать простейший блок питания и выпрямитель

Как сделать простейший блок питания и выпрямитель

В этой статье ЭлектроВести расскажут вам как сделать простейший блок питания и выпрямитель.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1. 5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1. 5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что Служба безопасности Украины обнаружила в режимных помещениях Южно-Украинской атомной электростанции компьютерную технику, которая использовалась для майнинга криптовалют. По данным следствия, из-за несанкционированного размещения компьютерной техники произошло разглашение сведений о физической защите атомной электростанции, что является государственной тайной. К майнингу криптовалют, возможно, были причастны служащие части Национальной гвардии Украины, охраняющие АЭС.

По материалам: electrik.info.

МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Собрал недавно очень неплохой лабораторный регулируемый блок питания по такой, многократно проверенной разными людьми схеме:

  • Регулировка от 0 до 40 В (при ХХ и 36В по расчету с нагрузкой) + возможна стабилизация до 50 В, но мне надо было именно до 36 В.
  • Регулировка тока от 0 до 6А (Imax устанавливается шунтом).

Имеет 3 вида защиты, если так можно назвать:

  1. Стабилизация по току (при превышении установленного тока — ограничивает его и любые изменения напряжения в сторону увеличения не вносят изменений)
  2. Триггерная защита по току (при превышении установленного тока отключает питание)
  3. Температурная защита (при превышении установленной температуры отключает питание на выходе) У себя ее не ставил.

Вот плата управления, основанная на LM324D.

С помощью 4х ОУ реализовано все управление стабилизацией и вся защита. В интернете более известна как ПиДБП. Данная версия — 16-я усовершенствованная, проверенная многими (v.16у2). Разрабатывается\лась на «Паяльнике». Проста в настройке, собирается буквально на коленке. Регулировка тока у меня довольно грубая и думаю стОит поставить еще дополнительную ручку точной настройки тока, помимо основной. На схеме справа есть пример как это сделать для регулировки напряжения, но можно применить и к регулировке тока. Питается все это от ИИП из одной из соседних тем, с квакающей «защитой»:

Как всегда, пришлось развернуть по своему ПП. Думаю о нем здесь особо не стоит говорить. Для умощнения стабилизатора установлены 4 транзистора TIP142:

Все на общем теплоотводе (радиатор от CPU). Для чего их так много? Во-первых — для увеличения выходного тока. Во-вторых — для распределения нагрузки на все 4 транзистора, что в последующем исключает перегрев и выход из строя на больших токах и больших разниц потенциалов. Ведь стабилизатор — линейный и плюс к этому всему, чем выше напряжение на входе и меньше напряжение на выходе, тем больше энергии рассеивается на транзисторах. В добавок у всех транзисторов есть определенные допуски по напряжению и току, для тех кто все это не знал. Вот схема подключения транзисторов в параллель:

Резисторы в эмиттерах можно устанавливать в пределах от 0.1 до 1 Ома, стоит учитывать, что при увеличении тока падение напряжения на них будет существенно и естественно нагрев неизбежен.

Все файлы — краткую информацию, схемы в .ms12 и .spl7, печатку от одного из людей на паяльнике (100% проверенная, все подписано, за что ему огромное спасибо!) в .lay6 формате, предоставляю в архиве. Ну и, наконец, видео работы защиты и немного информации о БП в целом:

Цифровой VA-метр в дальнейшем заменю, поскольку он не точен, шаг показаний большой. Сильно разнятся показания тока при отклонении от настроенного. Например выставим 3 А и на нем тоже 3 А, но когда снизим ток до 0.5 А, то он будет показывать 0.4 А, например. Но это уже другая тема. Автор статьи и фото — BFG5000.

   Форум по ИП

   Форум по обсуждению материала МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ


   Универсальный блок питания, с помощью которого можно получить все напряжения, которые могут понадобиться в радиолюбительской и просто бытовой деятельности, должен быть в каждом доме. И конечно БП должен иметь хорошую мощность — обеспечивать ток выхода не 0,5 А, как у дешёвых китайских адаптеров, а несколько ампер, чтобы подключить даже свинцовые аккумуляторы от автомобиля для заряда, или электромоторы. Конечно при этом хочется чтоб диапазон напряжений так же имеет значение. Большинство схем блоков питания для начинающих ограничены 12 вольт, в лучшем случае 20. Но бывает нужно и 24, и 36 В. Сложно ли создать такой БП самому? Нет, ведь для схемы понадобится всего лишь десяток деталей. Вот очень простой, универсальный источник питания с регулируемым напряжением питания. Максимальное выходное напряжение 36 В — оно настраивается в диапазоне от 1,2 до (vcc — 3) вольт. 

Схема регулируемого блока питания

   Транзистор Q1 — это мощный PNP Дарлингтон, используется для увеличения тока микросхемы LM317. Сама LM317L без радиатора может дать 100 мА, чего достаточно для управления транзистором. Элементы D1 и D2 являются защитными диодами, потому что при включении схемы заряд конденсаторов может повредить транзистор или стабилизатор.

   Параллельно электролитическим конденсаторам для устранения высокочастотных шумов ставим 100 нФ конденсаторы, потому что электролитические имеют большие значения ESR и ESL и не могут чётко устранить высокочастотные помехи. Вот примерный дизайн печатной платы для этой схемы.

Примечания

  • Транзистору Q1 нужен радиатор и лучше небольшой вентилятор.
  • Максимальная выходная мощность схемы — 125 ватт.
  • R1 — 2 Вт, другие резисторы — 0.25 ватт.
  • Все конденсаторы 50 В.
  • RV1 — 5 кОм регулятор.
  • Трансформатор требуется на 36 В 5 А. С мощностью от 150 ватт и выше.
  • Клеммы подключения выходных проводов — как для АС в усилителях, винтовые.

Поделитесь полезными схемами


СЕТЕВОЙ БЛОК ПИТАНИЯ НА 5 ВОЛЬТ

    Само устройство состоит из нескольких деталей и наладки не требует, работает сразу после включения. На выходе строго 5 вольт, хотя блок питания и не содержит понижающего сетевого трансформатора.


СХЕМА САМОДЕЛЬНОГО ЛАЗЕРА

   Берем две пальчиковые батарейки и через резистор в 5 ом подключаем к диоду. Минус напрямую подключаем к среднему выводу диода, плюс сначала левому , потом правому выводу (можно и наоборот) и смотрим, пока лазер слегка не засветится красным светом.  


ВЫКЛЮЧАТЕЛЬ ИК ДУ

     Включить электроустройства с помощью пульта дистанционного управления не является ноу-хау, и вы можете найти много различных устройств делающих это хорошо. Для изготовления этого типа устройств, вы должны сделать приемник, передатчик. Здесь же можно сделать это устройство, но вам нужно будет сделать только приемник, потому что в качестве передатчика будет использоваться пульт дистанционного управления от телевизора или DVD.  



Мощный лабораторный блок питания / Хабр

Не так давно приобрёл паяльную станцию. Давно занимаюсь любительской электроникой, и вот настал момент когда точно осознал что пора. До этого пользовался батиным самопальным блоком, совмещавшим лабораторный блок питания и блок питания низковольтного паяльника. И вот встала передо мной проблема: паяльную станцию я ставлю, а старый блок держать ради хилого и не точного блока питания 0-30в 3А или таки купить нечто современное, с защитой по току и цифровыми индикаторами? Поползав по ебею понял что максимум что мне светит это за 7-10 тыс купить Китайский блок с током максимум в 5А. Жаба сказала своё веское «ква», руки зачесались и…

Теперь к сути. Сформировал требования к блоку: минимум 0-30В, при токах минимум 10А, с регулируемой защитой по току, и с точностью регулировки по напряжению 0.1В. И что б стало ещё интереснее — 2 канала, пусть и от общей земли. Установка напряжения должна быть цифровой, т.е. никаких переменных резисторов, только энкодеры. Фиксированные установки напряжения и запоминание — опционально.

Для индикации состояния выхода были выбраны цифровые китайские комбинированные индикаторы на ЖК, с диапазоном до 199В с точностью 0.1В и до 20А с точностью 0.01А. Что меня полностью устроило. А вот что забыл, так это прикупить к ним шунты, т.к. по наивности думал что они будут в комплекте.

Для первичного преобразования напряжения думал использовать обычный трансформатор с отводами через каждые 6В, коммутируемый релюшками с контроллера, а для регулировки выхода простой эмиттерный повторитель. И всё бы ничего, но когда узнал стоимость и габариты такого трансформатора (30В * 10А = 300вт), то понял что надо быть современнее и использовать импульсные блоки питания.

Пробежавшись по предложениям понял что ничего толкового на мои токи нет, а если и есть, то жаба категорически против. В связи с этим пришла мысль попробовать использовать компьютерные блоки питания, коих всегда у любого ITшника предостаточно. Были откопаны блоки по 350Вт, что обещало 22А по +5В ветке и 16А по 12В. Пробежавшись по интернету нашёл много противоречивых мнений по поводу последовательного соединения блоков, и нашёл умную статью на Радиокоте как это сделать правильно. Но перед этим решил рискнуть и таки взять и нахрапом соединить блоки последовательно, дав нагрузку.

… И получилось!

На фото последовательно соединены 3 блока. Де-факто на выходе 35В, 10.6А.

Далее возник вопрос: каким контроллером управлять. По идее ATMega328 тут идёт за глаза, но ЦАПы… Посчитав почём обойдётся хотя б 2 ЦАПа на 12 бит и посмотрев характеристики Arduino DUE с ними на борту, а так же сравнив кол-во требуемых ПИНов, понял что проще и дешевле и быстрее будет просто поставить эту ардуину в блок целиком, вместе с платой.

Постепенно на макетках родилась схема. Приведу её в общем виде, только для одного канала:

Схема бьётся на несколько функциональных блоков: Набор блоков питания ATX, блок коммутации БП, блок усилителя напряжения ЦАП Arduino, блок усилителя напряжения токового шунта, блок ограничения напряжения по заданному току.

Блок коммутации БП: В зависимости от заданного пользователем напряжения Ардуино выбирает какую ветку задействовать. Выбирается минимальная по напряжению ветка, на минимум +3В большая заданного. 3В остаются на неточности установки напряжения в блоках питания + ~1.2В просада напряжения на переходах транзистора + не большой запас. Одновременно задействованный ключ ветки активирует тот или иной блок питания. Например задав 24В надо активировать все 3 блока питания и подключить выход на +5в 3-го в цепочке, что даст на коллекторе выходного транзистора VT1 +29В, тем самым минимизируя выделяемую тепловую мощность транзистора.

Блок усилителя напряжения: Реализован на операционном усилителе OP1. ОУ используется Rail-to-Rail, однополярый, с большим напряжением питания, в моём случае — AD823. Причём выход ЦАП Ардуино имеет смещение нулевой точки = 0.54В. Т.е. если Вы задаёте напряжение выхода = 0, на выходе де-факто будет присутствовать 0.54В. Но нас это не устраивает, т.к. ОУ усиливает с 0, и напряжение тоже хочется регулировать с 0. Поэтому применён подстроечный резистор R1, вычитающий напряжение. А отдельный стабилизатор на -5В, вместо использования -5В ветки блока питания, используется ввиду нестабильности выдаваемого блоком питания напряжения, меняющимся под нагрузкой. Выход же ОУ охвачен обратной связью с выхода VT1, это сделано что б ОУ сам компенсировал изменения напряжения в зависимости от нагрузки на выходе.

Кстати, о AD823 из Китая по Ебею: день промучился, понять не мог, почему схема не работает от 0 на входе. Если больше 1.5В то всё становится нормально, а иначе всё напряжение питания. Уже подумав что сам дурак, нарвался на рассказ как человек вместо AD823 получил с Китая подделку. Тут же поехал в соседний магазин, купил там, поставил и… О чудо — всё сразу заработало как надо. Игра, найди отличия (подделка в кроватке, справа оригинал. Забавно что подделка выглядит лучше):

Далее усилитель напряжение токового шунта. Поскольку токовый шунт достаточно мощный, то и падение напряжения на нём мало, особенно на малых токах. Поэтому добавлен OP2, служащий для усиления напряжения падения шунта. Причём от быстродействия этого ОУ зависит скорость срабатывания предохранителя.

Сам предохранитель, а точнее блок ограничения тока, реализован на компараторе OP2. Усиленное напряжение, соответствующее протекаемому току, сравнивается с напряжением, установленным электронным потенциометром и если оно выше — компаратором открывается VT2, и тот сбрасывает напряжение на базе выходного транзистора, по сути выключая выход. В работе это выглядит так:

Теперь к тому, почему в качестве шунта у меня дроссель. Всё просто: как я писал раньше — я просто забыл заказать шунты. А когда уже собирал блок и это выявилось, то ждать с Китая показалось долго, а в магазине дорого. Поэтому не долго думая, порылся в распайке старых компьютерных блоков питания и нашёл дроссели, почти точно подошедшие по сопротивлению. Чуть подобрал и поставил. Дополнительно же это даёт защиту: В случае резкого изменения нагрузки, дроссель сглаживает ток на время, достаточное что б успел отработать ограничитель тока. Это даёт отличную защиту от КЗ, но есть и минус — импульсные нагрузки «сводят блок с ума». Впрочем, для меня это оказалось не критично.

В итоге у меня получился вот такой блок питания:


Надписи на лицевой части сделаны с помощью ЛУТа. Индикаторы работы блоков питания выведены на 2-х цветный светодиод. Где красный запитан от дежурных +5в и показывают что блок готов к работе. А зелёный от Power_Good, и показывает что блок задействован и исправен. В свою очередь транзисторная развязка обеспечивает гашение красного светодиода и если у блока проблема — потухнет и красный и зелёный:

Маленькие экраны показывают заданные параметры, большие — состояние выхода де-факто. Энкодерами вращением устанавливается напряжение, короткое нажатие — вкл/выкл нагрузки, длинное — выбор режима установки напряжения/максимального тока. Ток ограничен 12.5А на канал. Реально в сумме 15 снимается. Впрочем — на той же элементной базе, с заменой блоков питания на нечто 500-т Ваттное, можно снимать и по 20. Не знаю, стоит ли приводить тут код скетча, простыня большая и достаточно глупая, + везде торчат хвосты под недоделанный функционал вроде коррекции выходного напряжения по АЦП обратной связи и регулировки скорости вентилятора.

Напоследок, пара слов. Оказалось что Arduino DUE при включении после длительного простоя может не начать выполнять программу. Т.е. включаем плату, думаем что сейчас начнёт выполняться наша программа, а в ответ тишина, пока не нажмёшь reset. И всё бы ничего, но внутри корпуса reset нажимать несколько затруднительно.

Поискал по форуму, несколько человек столкнулось с такой же проблемой, но решения не нашли. Ждут когда разработчики поправят проблему. Мне ждать было лениво, поэтому пришлось решать проблему самому. А решение нашлось до безобразия примитивное, впаять электролитический конденсатор на 22мкФ в параллель кнопке. В результате, на момент запуска, пока идёт заряд этого конденсатора, имитируется нажатие кнопки reset. Отлично работает, прошиваться не мешает:

В заключение:

По-хорошему надо повесить на все радиаторы датчики температуры и регулировать скорость вентилятора в зависимости от температуры, но пока меня устроила и платка регулятора скорости вентилятора из какого-то FSPшного блока питания.

Ещё хотелось бы через АЦП обратную связь с блоком коммутации на случай залипания релюшки, а так же обратную связь по выходу, дабы компенсировать температурный дрейф подстроечных резисторов (в пределах 0.1в на больших напряжениях бывают отклонения).

А вот кнопки памяти и фиксированные настройки по опыту использования кажутся чем-то не нужным.

Блок питания своими руками.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт — повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;

  • Максимальный ток нагрузки (Imax) – 0,5 A;

  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;

  • Защита от перегрузки по току;

  • Защита от появления на выходе повышенного напряжения;

  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор.

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов.

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Детали и электронные компоненты.

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.

Силовые трансформаторы ТС-10-3М1 и ТП114-163М

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.

Самовосстанавливающийся предохранитель FRX050-90F

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Микросхема DA1   MC34063
Диодный мост VDS1 (VD1-VD4) 1-2 ампер, 600 вольт D3SBA10, RS207, DB107 и аналоги

Электролитические конденсаторы

C8, C9, C12 330 мкФ * 16 вольт К50-35 или аналоги
C3 2200 мкФ * 35 вольт
Конденсаторы C1, C2, C4, C5, C10, C11, C13 0,22 мкФ КМ-5, К10-17 и аналогичные
C6 0,1 мкФ
C7 470 пФ
Резисторы R1 0,2 Ом (1 Вт) МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3 560 Ом (0,125 Вт)
R4 3,6 кОм (0,125 Вт)
R5 8,2 кОм (0,125 Вт)
Резистор переменный R2 1,5 кОм СП3-9, СП4-1, ППБ-1А и аналогичные
Диод Шоттки VD2   1N5819
Стабилитрон VD3 11 вольт 1N5348
Дроссель L1, L2 300 мкГн  
Дроссель L3   самодельный
Предохранитель плавкий FU2 0,16 ампер  
Самовосстанавливающийся предохранитель FU1 0,5 ампер (на напряжение >30-40 вольт) MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторный HL1 любой 3 вольтовый  

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. — внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD — дроссель).

SMD-дроссель

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.

Дроссель с радиальными выводами

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 — 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения.

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы.

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

В общем, выбрать есть из чего.

Налаживание и проверка блока питания.

Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» — взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.

Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!

P.S.

Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.

Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Регулируемый лабораторный блок питания для низковольтной электроники

Я много работаю с низковольтной электроникой, для которой часто требуется изменять напряжение. Мне надоело каждый раз искать аккумуляторы и подбирать к ним нужные резисторы, чтобы лишь проверить небольшой участок цепи. В идеале, я хотел, чтобы можно было быстро и легко выбрать нужное напряжение и проверить устройство. Поэтому я решил сделать регулируемый лабораторный блок питания для тестирования электроники.

Этот блок питания выдает от 1В до 10,7В постоянного тока. Очень легко перестроить блок, чтобы добавить диапазон переменного напряжения, но я никогда его не использую, поэтому не беспокоюсь об этом. Также очень легко обеспечить диапазон 0В-36В, но мне вряд ли когда-либо понадобится более 10 В, поэтому я использовал небольшое количество компонентов, которые можно легко достать.

Есть несколько других линий, доступных блокам питания, таких как: 12В, -12В, 5В, -5В, 3.3В, земля, диапазон напряжения (1-10.7В) и удлинитель для розетки (115В переменного тока). Предел минимальной силы тока на любой из линий составляет 2А, максимальный предел составляет 20А на одной из линий. Я не помню точные пределы для каждой из линий. Это будет зависеть от того, какой конкретный блок питания вы выберете.

Да, я мог бы использовать готовый блок питания и установить только правильную полярность, но мне очень понравилась форма этого корпуса. Если я когда-нибудь захочу поставить его на свой верстак (когда он у меня будет), размер идеально подойдет и будет достаточно места для установки разных модных штуковин, которые я захочу (а именно, измерительные приборы и переключатели вместе с переменной линией).

В любом случае, это отличный инструмент на любом рабочем месте!

Шаг 1: Необходимые материалы

Возможно, у вас уже есть всё, что вам понадобится. Нет необходимости в каких-либо необычных деталях. Вот список материалов и инструментов (с примерными ценами):

Шаг 2: Дизайн панели

Подготовьте образец внешнего вида передней части вашей коробки. Я использовал компьютерную программу для разработки макета из компонентов, которые хотел включить. Я начал с панели измерительных приборов (вольтметр, амперметр и термометр), а также разметил место для потенциометра, переключателя, светодиодного индикатора, 3-контактного разъема и разъемов для полярности. Также я наметил все размеры между элементами на панели.

Сделав все наброски от руки, я перенес весь чертеж в AutoCAD, указав все необходимые параметры. Сохранив проект в формате «.dxf», я отправился в местный «фаблаб» (если вы не знаете, что такое «фаблаб», обязательно узнайте и найдите его в своем городе!) и вырезал лазером свою панель из необычного пластика. Он прочный, долговечный, трудно режется, не проводит ток, слегка гибкий и гладко-черный. Идеальный набор свойств для лицевой панели!

С моей новой великолепной лицевой панелью я продолжил работу над внутренней частью мощного лабораторного блока питания.

Шаг 3: Открываем коробку!

Распотрошите старую коробку (если вы не используете готовый блок питания). Вам нужно будет устанавливать новые компоненты максимально плотно, использовать каждый свободный миллиметр. Убедитесь, что ни один из металлических выводов или конденсаторов в блоке питания не касается корпуса. Используйте изоленту или пенопласт или любой другой изолятор, чтобы предотвратить ненужные контакты с корпусом.

Как только новый блок питания будет собран, либо заклейте его, либо прикрутите, в зависимости от того, какой у вас корпус. Горячий клей также подойдет (он не проводит ток). Не нужно закручивать корпус намертво, достаточно небольшого усилия. Мой крепится винтами, поэтому здесь мне повезло!

Теперь следует подумать о том, как вы будете протягивать провода, чтобы соединить все компоненты.

Шаг 4: Монтируем лицевую панель

Я буду использовать полиуретановый клей. Он мне нравится.

Во-первых, давайте модифицируем переднюю панель коробки. Моя панель была из листового металла. Я провел некоторые измерения, а затем сделал пару опорных рамок, чтобы вырезать нужные отверстия, оставив на задней части лишь несколько наконечников (см. Рисунок).

Возьмите дремель и круг для метала, и повеселитесь, наблюдая за искрами. Не забудьте надеть защитные очки! Попадание искр на кожу причиняет боль и раздражение. Защитой не стоит пренебрегать. Перчатки тоже будут не лишними. При резке я держал металлические части плоскогубцами. Это нужно для того, чтобы предотвратить попадание металлической стружки на руки, чтобы не обжечься, т. к. металл сильно нагреется, и чтобы защитить руку в случае, если режущий круг сломается. Для этого же нужны и перчатки.

Затем поместите лицевую панель на новую переднюю раму. Если она не влезает по размеру, немного срежьте или сточите края.

На следующем этапе сборки лабораторного блока питания из китайских модулей я понял, что лучше бы я сделал всё иначе. Нужно было сначала прикрепить провода изнутри, а только потом устанавливать переднюю панель. Не повторяйте моих ошибок!

Теперь нужно приклеить лицевую панель со всеми ее компонентами, прикрепленными к ней, к металлической раме, которую вы уже разрезали. Убедитесь, что клей попал туда, где вам еще нужно будет паять или в места, которые вы планируете снова разбирать. Не нужно лить слишком много клея, лучше делать всё в несколько этапов и не торопиться, чем переделывать всё заново.

Шаг 5: Схема проводов

Я думал, что из-за размеров моего ящика это будет несложно, но оказалось, всё не так просто. Особенно сложно делать проводку в тех местах, где панель стоит слишком близко к элементам блока. С другой стороны корпуса получилось довольно пусто.

Во-первых, я сделал эскиз общей схемы, который вы можете видеть на картинке сверху. Разместить амперметр в комбинации с вольтметром было самым сложным (на самом деле не таким уж и сложным), потому что для них нужно перестроить всю линию земли. В схеме довольно понятно, как это нужно сделать. Поскольку амперметр должен быть соединен с землей, я просто установил его перед заземленными разъемами, связанными с землей блока питания. Я убрал с этой линии вентиляторы и светодиодные индикаторы, чтобы они не влияли на показания.

На измерительные приборы я провел все необходимое для заземления, а также 5-вольтовую линию для питания светодиодов (она также исключена из линии измерения, чтобы не портить показания), поэтому каждая из этих линий должна направляться в блок питания. Кроме того, вольтметр должен измерять напряжение на линии переменного напряжения, поэтому его нужно подключить к разъему «VAR».

Затем каждый из оставшихся разъемов был подключен к соответствующим линиям блока. Здесь всё просто и понятно.

Наконец, необходимо спроектировать цепь переменного напряжения. У меня есть много вариантов, которые я мог бы использовать, но потом мне пришло в голову: «Почему бы просто не сделать её максимально дешевой и простой?». Я почти всё время работаю только с низким напряжением 1 — 10В, поэтому почему бы просто не использовать самые дешевые компоненты, которые лежат под рукой. Для схемы, которая находится выше, я использовал LM317. Я не буду объяснять, почему сделал именно так, потому что не силен в объяснениях. Я уверен, найдутся люди, которые смогут придумать вариант получше. Если вы хотите вариант попроще, то можете использовать мой.

Небольшое обозначение всех проводов по цветам (в сочетании с первым изображением для этого шага)

  • Синий = -12В. Подключается к разъему -12В.
  • Желтый = + 12В. Подключается к разъему +12В и к V «in» на плате LM317.
  • Красный = + 5В. Подключается к разъему +5В. Также подключите к вентиляторам, светодиодам и панели измерительных приборов. (к амперметру подключите тонкий красный провод, а не толстый)
  • Белый = -5В. Подключается к разъему -5В.
  • Оранжевый = 3,3 В. Подключается к разъему 3.3В (также можно запитать от них светодиоды)
  • Черный = земля (0 В). Подключается к разъему GND. Также подключается к многим другим элементам (см. схему)
  • Фиолетовый = 5В (режим ожидания). Эта линия активна (5В), когда блок питания выключен. Таким образом, светодиод, подключенный к фиолетовому кабелю, всегда будет гореть, даже если переключатель находится в выключенном положении. Если эта линия вам не нужна, провод можно не подключать.
  • Зеленый = включение питания. Это линия переключателя. Чтобы любой блок питания включился (как правило), вам нужно замкнуть зеленый провод с землей. Так что этот провод идет к переключателю (направление и полярность не имеют значения)
  • Серый = «питание в норме». Просто не трогайте этот провод.

Шаг 6: Последние штрихи

Перед окончательной сборкой детали можно покрасить. Также можно сделать подсветку внутри корпуса (я установил синий светодиод просто для красоты). Проверьте, чтобы вентиляторы работали. Удостоверьтесь, разъемы не проваливаются в корпус. В общем, перед сборкой нужно проверить каждый компонент. Если всё собрано верно, аппарат должен заработать.

Теперь у меня есть замечательный регулируемый лабораторный блок питания, находящийся прямо на моем столе. Он хорошо сочетается с моей паяльной станцией, лампами и другими электронными приборами, которыми я пользуюсь.

cxema.org — Мощный импульсный блок питания

В радиолюбительской практике многие самодельные конструкции остаются на полках без внимания по той причине, что не имеют блока питания. Одна из самых повторяемых конструкций — усилитель мощности низкой частоты, которому тоже нужен источник питания. Сетевые трансформаторы для запитки мощных усилителей стоят немало денег, да и размеры и вес иногда некстати. По этому в последнее время широкое применение нашли импульсные блоки питания. Эти блоки имеют полностью электронную начинку и работают в импульсном режиме. За счет повышенной рабочей частоте удается резким образом уменьшить размеры и вес источника питания. Схема такого блока питания была найдена в одном из зарубежных сайтов, недолго думая, решил повторить конструкцию.

Конструкция отличается особой простотой и дешевизной, в моем случае было потрачено всего 5$ на транзисторы и микросхему, все остальное можно найти в нерабочем компьютерном блоке питания.

Мощность такого блока может доходить до 400 ватт, для этого нужно только поменять диодный выпрямитель и электролиты, вместо 220 мкФ, поставить на 470.

Термистор — любой, он сохранит транзисторы во время броска напряжения при подачи питания. Имеется также сетевой фильтр, который состоит из дросселя и пленочных конденсаторов, в какой-то мере сглаживает сетевые помехи и пульсации.

Выпрямитель можно взять готовый, от компьютерного БП или собрать мост из диодов с током 3 А и более, обратное напряжение диодов не менее 400Вольт.

Полевые ключи — в моем случае использовались мощные силовые транзисторы IRF740 с рабочим напряжением 400 Вольт при токе 10 Ампер.

Ключи установлены на общий теплоотвод, но изолированы от него во избежания коротких замыканий. Выбор транзисторов не критичен, в ходе работы они у меня остаются холодными даже с выходной нагрузкой 50 ватт (при этом транзисторы без теплоотводов).

Трансформатор — выпаян из блока питания АТХ.

Сердцем блока питания является драйвер IR2153, она же и является задающим генератором. Драйвер достаточно мощный и номинал выходного сигнало достаточен для управления полевыми ключами. В случае использования микросхем в обычном DIP корпусе, нужен ультрабыстрый или быстрый диод, подключенный в прямом направлении от 1 к 8 выводу.

Собранная схема заработает сразу, если с монтажом ничего не перепутали. Ограничительный резистор 47 к для питания микросхемы нужен с мощностью 1-2 ватт, в моем случае нужного резистора не нашлось, поэтому использовал два резистора, суммарное сопротивление которых 47к. Этот резистор в ходе работы может чуть перегреться, но это не страшно и вполне нормально.

На выходе трансформатора можно использовать импульсные или быстрые диоды, можно также ставить диодные сборки Шоттки из компьютерных БП, как право, они рассчитаны на большие токи. Можно применять также отечественные диоды серии КД213А, которые могут работать на частотах до 100кГц, а максимальный допустимый ток доходит до 10Ампер.

Первый запуск схемы нужно проводить с последовательно подключенной лампой накаливания на 220 Вольт 100 — 150 ватт, чтобы при неправильном монтаже схема не взорвалась.

ЧТО СДЕЛАТЬ, ЕСЛИ СХЕМА НЕ ЗАРАБОТАЛА? (несколько советов)

Если схема при первом включении не заработала, то в первую очередь проверьте в лишний раз монтаж, а вначале работ тщательно проверяйте компоненты на исправность.

На выход трансформатора подключите галогенную лампу на 20 ватт, которая будет играть в роль контрольной лампочки. Если при включении лампа начнет мигать, а схема будет издавать свист, то скорее всего не хватает напряжения для питания микросхемы. В таком случае нужно понизить номинал резистора 47к до 45, если не поможет, то до 40килоом и так до тех пор, пока не нормализуется работа генератора.

Нормально настроенная и рабочая схема не должна издавать слышимых звуков, транзисторы без выходной нагрузки должны быть холодными, на каждом конденсаторе должно быть 150 160 вольт постоянного тока. Если один из конденсаторов греется, то проверьте мост, скорее всего имеется неисправный диод и на конденсатор поступает переменный ток. После устранения неполадок замените конденсатор и включите схему.

Такой блок питания можно использовать в качестве лабораторного блока питания, или зарядного устройства для мощных кислотных аккумуляторов автомобиля, мы лишь представили вариант сборки, а где применить — ваша фантазия. Оставайтесь с нами, станьте подписчиком нашей группы ВК и будьте в курсе о новых обновлениях.

Плата в формате Sprint-layout

С уважением — АКА КАСЬЯН

6 отличных источников питания для вашей лаборатории электроники

Вы заметили, что ваша лаборатория электроники могла бы потребовать небольшого обновления с 1970-х годов по настоящее время? Если да, то вы попали в нужное место. Надежный источник питания постоянного тока часто считается требованием во многих современных лабораториях электроники. Мы хотели поделиться несколькими отличными вариантами блоков питания, которые помогут вам развить устаревшее оборудование для блоков питания!

* Этот пост содержит партнерские ссылки, по которым мы будем получать небольшую комиссию без каких-либо дополнительных затрат для вас.

6 отличных источников питания для обновления вашей лаборатории электроники

1. Регулируемый линейный источник питания постоянного тока Tekpower TP3005T

Источник переменного тока Tekpower TP3005T — это компактный прибор линейного типа, который подходит как для лабораторного, так и для промышленного использования.

Этот цифровой источник питания постоянного тока имеет максимальное выходное напряжение до 30 вольт и ток до 5 ампер . Он поставляется с поворотными переключателями для настройки напряжения и тока.

Благодаря своей надежности и универсальности, это бесценный и незаменимый инструмент для тестирования, который идеально подходит для лабораторий, исследовательских институтов и научно-исследовательских центров.

2. Блок питания Rigol DP832 Triple Output 195 Вт

Rigol DP832 — это источник питания более высокого уровня, который предлагает 3 выхода с общей мощностью до 195 Вт. Это позволит вам установить удаленную связь между DP800 и ПК через интерфейс USB, LAN, RS232 или GPIB.

Пульт дистанционного управления Методы включены в определяемое пользователем программирование. Вы также можете программировать прибор и управлять им с помощью SCPI (Стандартные команды для программируемых приборов). Это позволяет отправлять команды SCPI через программное обеспечение ПК. Вы можете управлять источником питания удаленно, отправляя команды SCPI через программное обеспечение ПК (UltraSigma), предоставляемое RIGOL.

Источник питания имеет очень хорошо сконструированный и простой в использовании интерфейс, предлагающий комплексные простые в использовании функции, такие как программируемые кривые напряжения. Меню имеет интуитивно понятную структуру.

3. Источник переменного тока EvenTek KPS

Высокоточный источник питания постоянного тока серии Eventek KPS специально разработан для научных исследований, разработки продуктов, лабораторий, школ и производственных линий электронной техники.
Выходное напряжение и ток плавно регулируются до номинального значения. Обладая высокой точностью, надежностью, идеальной схемой защиты от перегрузки и короткого замыкания, они могут быть идеальным выбором для промышленности.

4. Настольный регулируемый источник питания постоянного тока YaeCCC

Лабораторный источник питания может действовать как источник питания для регулирования напряжения или тока. Диапазон регулирования напряжения составляет от 0 В до 30 В, а диапазон тока — от 0 А до 5 А.

Выход устанавливается поворотными переключателями, значение отображается на ЖК-дисплее. Он имеет низкие пульсации и шум, высокую надежность и высокую точность. В комплект входят измерительные провода для подключения к источнику питания (банановые вилки) и нагрузке (зажимы типа «крокодил»).Отличный вариант по более низкой цене!

5. Программируемый лабораторный источник питания постоянного тока KORAD

Этот линейный источник питания с множеством функций и непревзойденной ценой !! Он имеет легко читаемый 4-значный светодиод, который используется для отображения значений напряжения и тока. Это высокопроизводительный одноканальный источник питания постоянного напряжения и постоянного тока с низким уровнем пульсаций и шума, высокой надежностью и высокой точностью. Напряжение и ток плавно регулируются. Блок питания KORAD разработан для использования в лабораториях, колледжах и на производстве.

6. Блок питания Siglent SPD3303X-E с тройным выходом

Блок питания Siglent SPD3303X-E содержит три независимых блока питания в одном блоке. Как истинный линейный источник питания, выходной шум и регулировка превосходны. Благодаря интеллектуальному вентилятору с регулируемой температурой снижается уровень шума. Разрешение по напряжению 10 мВ / 10 мА. Блок питания SPD3303X-E поставляется с программным обеспечением EasyPower для ПК, поддерживает команды SCPI и, как и все приборы Siglent, имеет доступный драйвер LabView.

Хотите обновить другое оборудование в своей лаборатории электроники? Посмотрите на эти 3 великолепных осциллографа для любого бюджета.

Топ-7 лучших источников питания постоянного тока для продажи в 2020 году

Источник питания — это электрическое устройство, которое преобразует питание на периферийные устройства или печатные платы . Его основная функция — преобразование электрической энергии в напряжения, токи и частоты.

В блоке питания есть все, от переключателей включения / выключения, тюнеров напряжения и тока до светодиодного дисплея. Вот почему я решил составить список Top 7 лучших источников питания постоянного тока 2020 , которые принесут пользу соискателям электроники, инженерам и лаборантам.

Составить список лучших блоков питания — непростая задача, так как в основном нужно учитывать цену и коэффициент качества . В идеале характеристики продукта должны быть вашим главным приоритетом.

Здесь я предоставил «Руководство по покупке » для источника питания постоянного тока. Читайте дальше, чтобы узнать больше!

1.Источник питания постоянного тока tekpower

Первым и главным в нашем списке является источник питания постоянного тока Tekpower. Он занимает первое место из-за своей громоздкой конструкции, которая делает его более портативным, чем другие.

Благодаря своей надёжности и универсальности, он также может использоваться в качестве инструмента тестирования в лабораториях, на производстве, исследовательских институтах и ​​научно-исследовательских центрах. Обсудим вкратце.

Этот превосходный блок питания может работать в 2 различных режимах: i.е. напряжение и ток. По сравнению с другими, он имеет высокоточный регулируемый источник питания с вращающимися переключателями для регулирования напряжения (30 В) и тока (5 А). Он также оснащен автоматическим охлаждающим вентилятором со встроенным термодатчиком.

Когда вы покупаете этот продукт, все компоненты аккуратно упакованы в картонную коробку, и вам предлагается технический паспорт, который содержит следующие характеристики:

  • Диапазон выходного напряжения постоянного тока составляет 30 Вт
  • Выходной ток постоянного тока составляет 5А
  • Входное напряжение переменного тока 110 В / 60 Гц
  • Регулировка напряжения и тока
  • Сильноточный вентилятор охлаждения
  • Рабочая температура 0-40 ° C
  • Относительная влажность менее 80%
  • Точность ЖК-дисплея ± 2.5%
  • Для пульсации и шума; CV <1 мВ, CC <3 мА
  • Для регулирования напряжения; CV <0,01% + 3 мВ, CC <0,2% + 6 мА
  • Для регулирования нагрузки; CV <0,01% + 3 мВ, CC <0,02% + 3 мА

Вы когда-нибудь хотели знать, что в коробке? Вот она…

  • Блок питания (TP3005T)
  • Шнур питания
  • Зонды
  • Измерительные провода с зажимами (28 дюймов) и
  • A руководство пользователя

В целом, характеристики источника питания Tekpower просто фантастические. Я предпочитаю этот комплект, так как это мой самый любимый и лучший комплект блока питания с замечательными функциями, доступный на рынке. Хотя цена немного дороговата, вы можете купить комплект для длительного использования.

Плюсы:

  • Высокая надежность.
  • Измените напряжения и токи.
  • Предлагает обслуживание клиентов на высоком уровне.
  • Предоставляется гарантия производителя на 1 год.

Минусы:

  • Очень дорого.
  • Не может эффективно работать при напряжении питания более 30 В.

Купить сейчас на Amazon

2. Eventek Цифровой импульсный источник питания

2 и в списке от бренда Eventek. Эта фирменная компания занимается крупными продажами электроники, периферийных устройств и других товаров для дома. Компания всегда стремилась предоставлять клиентам более качественные услуги.

Это легкий комплект со всеми функциями, которые необходимы блоку питания.Он специально разработан для школ, инженерных колледжей, лабораторий, тестирования и разработки электронных продуктов.

В идеале, это может быть хороший выбор для промышленности с высокой точностью, надежностью и схемой защиты от короткого замыкания.

На передней панели источника питания находятся светодиодный дисплей, тюнеры напряжения и тока, переключатель амплитуды, 3 порта для подключения положительного-отрицательного заземления и главный переключатель питания. Внутри источника питания есть регулятор температуры для снижения шума и эффективного продления срока службы.

Технические характеристики регулируемого источника питания следующие:

  • Выходное напряжение постоянного тока 0-30 В
  • Выходной ток постоянного тока 0-10A
  • Общий КПД 89%
  • Сильноточный ограничитель и вентилятор охлаждения
  • Напряжение 0,1 В, ток 0,1 А
  • Вентилятор контроля температуры (если выше 50 ° C)
  • Размеры: 8,8 * 3,2 * 6,5 дюйма
  • Весит около 3,2 фунта
  • Регулировка напряжения; CV 0,01% + 3 мВ, CC <0. 2% + 6 мА
  • Стабилизация нагрузки; CV 0,1% + 1 мВ / CC 0,1% + 3 мА
  • Пульсация и шумы; CV <1 мВ действующее значение, CC <3 мА, действующее значение

В этот замечательный комплект блока питания входит:

  • Eventek Блок питания (KPS3010D)
  • Выходной шнур питания (2)
  • Входной шнур питания
  • Подключение датчиков и
  • Руководство пользователя

Плюсы:

  • Множественная защита.
  • Может изменять показания напряжения и тока.
  • Предложение с возвратом денег в течение 30 дней и 12 месяцев ограниченной гарантии.

Минусы:

  • Немного дороже.
  • Не очень удобен в использовании.

Купить сейчас на Amazon

3. Источник переменного тока Tacklife MDC02

Источники питания постоянного тока MDC02 стабильны и позволяют непрерывно регулировать как выходной ток, так и уровни напряжения. Он отличается высокой точностью, надежностью, множественной защитой, такой как идеальная схема защиты от перегрузки и короткого замыкания.

Он разработан для школ, лабораторий и обслуживания электроники, подходит как для промышленных, исследовательских институтов, так и для лабораторий. Его интеллектуальный вентилятор с контролем температуры обеспечивает отличный эффект рассеивания тепла, что снижает уровень шума и продлевает срок службы продукта.

Высокоточный позиционер поможет получить более точные показания при переключении между грубой и точной настройкой при 1 В / 0.01 В и 0,1 А / 0,001 А. Это компактный, легкий, прочный, портативный и удобный источник питания постоянного тока с 4-значным дисплеем, который виден даже при слабом освещении.

Он имеет два узла для завершения всех корректировок данных для двух режимов работы (напряжение и сила тока), чтобы выбрать между курсом и точным. Он оснащен поворотными переключателями для регулирования напряжения (30 В) и тока (10 А).

Технические характеристики регулируемого источника питания следующие:

  • Выходное напряжение постоянного тока 0-30 В
  • Выходной ток постоянного тока составляет 0-10 А
  • Входное напряжение: 110 В переменного тока, 50 Гц / 60 Гц + 2 Гц
  • Сильноточный ограничитель и вентилятор охлаждения
  • Напряжение равно 0.01 В и ток 0,1 А
  • Вентилятор контроля температуры (если выше 60 °)
  • Защита: постоянный ток и защита от короткого замыкания
  • Точность индикации напряжения: светодиод + 0,5% + 5 цифр
  • Точность индикации тока: светодиод + 0,5% + 5 цифр
  • Весит около 3,50 фунтов
  • Регулировка линии: CVs 0,02% + 5 мВ CCs 0,2% + 1 мMA
  • Регулировка нагрузки: CVs 0,02% + 10 мВ CCs 0,5% + 10 мА
  • Пульсация и шум: CVs10mVr.m.s CCs10mAr.m.s
  • Окружающая среда: 0 ~ + 40 ° C, относительная влажность: <90%

Хотите узнать, что входит в комплект блока питания? Вот он

  • MDC02 Источник питания постоянного тока
  • Выходной шнур питания
  • Входной шнур питания
  • Руководство пользователя

Плюсы:

  • Может изменять показания напряжения и тока
  • Множественная защита
  • Функция грубой и точной настройки и сохранения данных
  • Функция повышенной точности с 4-значными показаниями.
  • Компактный, портативный и легкий

Минусы:

  • Не переносит экстремальных условий.
  • Информация о гарантии отсутствует.

Купить сейчас на Amazon

4. Источник питания постоянного тока Yescom

Номер 4 в нашем списке от источника питания Yescom. Это хороший продукт для инженеров и лаборантов.

Несмотря на то, что вы постоянно работаете с режимами работы по напряжению и току, невозможно одновременно использовать оба параметра.Это главный недостаток всех устройств питания.

Таким образом, схема разработана безопасно с использованием высококачественных компонентов. Внешний слой выполнен из стального корпуса для защиты внутренней схемы от внешних воздействий. Вы можете использовать источник питания с полной нагрузкой в ​​течение 24 часов без перебоев. Контроллер температуры регулирует скорость в зависимости от нагрузки и соответственно уменьшает искажения.

Поскольку батареи не используются, вы можете напрямую подключить блок питания к внешнему источнику.Вместе с источником питания предоставляется удобное руководство, которое поможет пользователю в работе с источником питания.

Параметры, которые необходимо учитывать при работе с источником питания:

  • 110 В переменного тока
  • Входное напряжение 110 В ± 10% 60 Гц
  • Выходное напряжение 0-30 В постоянного тока
  • Выходной ток DC 0-10A
  • Размеры: 10,2 * 4,9 * 6,1 дюйма
  • Разрешение дисплея: напряжение-0,1В, ток-0,1А.
  • Точность отображения ± 1% ± 1 цифра
  • Напряжение стабилизации равно 0.05% + 1 мВ
  • Стабилизация тока 0,1% + 10 мА
  • Стабилизация нагрузки CV 0,1% + 1 мВ / CC 0,1% + 10 мА
  • Пульсации и шум CV 10 мВ / CC 20 мА
  • Условия работы: относительная влажность от 14 ° F до 104 ° F <80%
  • Условия хранения: от -4 ° F до 176 ° F относительная влажность <80%

В комплект входят следующие компоненты:

  • Источник питания постоянного тока
  • Шнур питания
  • измерительные провода и
  • Удобное руководство

Плюсы:

  • Множественная защита.
  • Регулируемые показания напряжения и тока.
  • Используйте блок питания 24 часа.

Минусы:

  • Хотя индивидуальные характеристики компонентов хорошие; небольшое изменение общей производительности блока питания.

Купить сейчас на Amazon

5. Линейный цифровой источник питания постоянного тока KORAD

Номер 5 будет очевиден из цифрового блока питания Korad.Торговая марка Korad известна тем, что поставляет электронные и механические инструменты и продает их по всему миру.

Стоимость этого блока питания слишком высока по сравнению с другими, упомянутыми в списке. Он очень надежен и обладает фантастическими характеристиками. По этой причине он указан под номером 5 в наших лучших наборах цифровых источников питания.

Ключевыми особенностями цифрового источника питания Korad являются цифровой контроллер, вентилятор с регулируемой температурой, функция блокировки ручки и низкий уровень шума.

Этот источник питания имеет компактную конструкцию с 4-значными светодиодными дисплеями и цифровыми контроллерами.Существует возможность переключить входной источник питания между 110-220 В и током в миллиамперах на амперы.

Вот несколько параметров, которые следует учитывать, прежде чем платить за источник питания постоянного тока Korad:

  • Входное напряжение 110/220 В
  • Диапазон напряжения и тока 0-30 В / 0-5 А
  • Температурный коэффициент 150 PPM
  • Напряжение пульсации составляет 2 мВ, а для тока — 3 мА
  • Вес продукта около 4,8 кг

Плюсы:

  • Надежный
  • Удобен в использовании.
  • Работает в 2 различных режимах переключения.

Минусы:

  • Слишком дорого.
  • Параметры фиксированной длины.

Купить сейчас на Amazon

6. Адаптер питания LE, внесен в список UL

Предпоследний в списке от адаптера питания LE. Производитель адаптера питания LE (Lighting Ever) предлагает экологически чистые продукты по самым выгодным ценам.

Когда мы провели исследование, 72 человека из 100 дали 5-звездочную оценку за качество, портативность и наличие множества приложений.Хотя покупать очень экономично; обеспечивает высокую производительность при подключении к внешнему источнику. По этой причине он указан под номером 6 среди всех доступных устройств питания.

Этот удивительный источник питания подходит для телевизоров, радио, компьютеров и светодиодных фонарей. Он просто поставляется с адаптером питания и кабелем USB. С помощью этого адаптера питания вы можете подавать входную мощность 100–240 В и вырабатывать на выходе 12 В постоянного тока.

При использовании источника питания необходимо учитывать следующие факторы:

  • Входное напряжение 100-240 В переменного тока
  • Выходное напряжение 12 В D
  • Максимальный ток: 3A
  • Максимальная мощность 36 Вт
  • вилка США и
  • Диаметр порта постоянного тока составляет 5 * 2. 1 * 10 мм

Плюсы:

  • Гибкая природа.
  • Очень удобно в использовании.
  • Основное применение в светодиодных светильниках.
  • Гарантия производителя на 1 год.

Минусы:

  • Не водонепроницаемый.
  • Инструкция по эксплуатации не включена.
  • Показания напряжения и тока фиксированы.

Купить сейчас на Amazon

7.BMOUO DC Универсальный импульсный источник питания

Последний в списке от производителя BMOUO. Этот известный бренд стремится предоставить каждому клиенту высокий уровень обслуживания.

Этот удивительный продукт позволяет легко взаимодействовать с телевизорами, радиоприемниками, компьютерами и светодиодными лентами. При использовании этого источника питания для освещения светодиодных лент обязательно устанавливайте минимальное напряжение, которое может выдержать светодиод. Иначе будет огромный урон.

Обладает защитой от перенапряжений и токов перегрузки.Наружная оболочка сделана из алюминия, чтобы избежать попадания в амортизаторы.

Технические характеристики регулируемого импульсного источника питания BMOUO следующие:

  • Входное напряжение переменного тока 115/230 В
  • Выходное напряжение 12 В постоянного тока
  • Выходной ток 0-29,2 А
  • Весит 660 грамм
  • Размер 215 * 114 * 50 мм и
  • Материал корпуса из алюминия

Плюсы:

  • Простота установки.
  • Множественная защита.
  • Обеспечивает стабильные и точные выходные данные.

Минусы:

  • Инструкции по эксплуатации не предусмотрены.
  • Фиксированные настройки напряжения и тока.

Купить сейчас на Amazon

Какие бывают типы блоков питания постоянного тока?

Управляемая электрическая энергия очень удобна в контексте бесчисленного множества тестовых ситуаций, поэтому источник питания стал популярным электронным испытательным оборудованием. Итак, давайте посмотрим на различные типы источников питания постоянного тока, которые обычно используются для обслуживания, разработки, тестирования и измерения.

  • Постоянный ток / напряжение

Источник питания постоянного тока / напряжения, согласно названию, обеспечивает постоянный ток, а также постоянное напряжение. Помимо этого, он считается самым популярным источником питания постоянного тока.

Когда работа происходит в режиме постоянного тока, следующий тип источника питания поддерживает установленный ток даже при изменении сопротивления нагрузки.

Некоторые из функций, которые вы найдете в источниках питания постоянного тока / напряжения, — это соединения ведущий / ведомый, дистанционное считывание и аналоговое программирование.

Источники питания с несколькими выходами состоят из 2-3 выходов питания. Если вы используете несколько напряжений во время тестирования, то источник питания с несколькими выходами может стать для вас идеальным выбором.

Ряд пользователей выбирают источник питания с тремя выходами, который состоит из одного цифрового логического выхода при соединении выходов для биполярной аналоговой схемы.

Некоторые из функций, которые вы найдете в источнике питания с несколькими выходами, включают настраиваемые ограничения напряжения, операции по времени, регистры памяти и возможность подключения двух каналов последовательно для более высокого напряжения или тока.

Программируемые блоки питания

широко известны как системные блоки питания, и они обычно используются рука об руку вместе с компьютерными системами для тестирования и производства.

Системные источники питания используют ряд компьютерных интерфейсов, таких как GPIB, IEEE-488, последовательная связь RS-232, интерфейсы USB и Ethernet.

Кроме того, в следующих типах источников питания используются определенные языки команд, на которых инструкции отправляются на прибор через цифровой интерфейс.

Некоторые из используемых языков являются SCPI-подобными, частными и SCPI. Этот тип источника питания весьма полезен при работе со сложными установками, поскольку он позволяет управлять программируемым источником питания через компьютер. Следовательно, вам не нужно нажимать клавиши на передней панели прибора.

Каковы преимущества источника постоянного тока?

  • Следует отметить, что большинство приборов потребляют электроэнергию постоянного тока.Например, электродвигатель, электроника, нагревательные элементы и электромобиль потребляют электричество постоянного тока. Также видно, что даже некоторые трехфазные электродвигатели переменного тока не могут конкурировать с электродвигателями постоянного тока с точки зрения простоты и эффективности.
  • Емкостные и индуктивные параметры не ограничивают пропускную способность воздушного кабеля постоянного тока. Кроме того, поперечное сечение проводника используется на полную мощность, так как не имеет скин-эффекта. Возможно, это означает, что он может пригодиться для передачи на большие расстояния. Следовательно, он может быть весьма полезен для передачи через большие города, открытое море и большие сложные электрические сети.
  • Внедрение цифровой системы управления может быть выполнено для обеспечения мгновенного и точного управления потоком активной мощности.
  • Стоимость оборудования, которое используется в высоковольтном постоянном токе для передачи на большие расстояния, составляет около 1/3 по сравнению с его аналогами.
  • Когда линия электропередачи постоянного тока интегрирована в существующую сеть переменного тока, мощность постоянного тока может достигать быстрой модуляции и, возможно, гасить эффект колебаний системы переменного тока.Таким образом, сохраняется стабильность всей системы.

Нерегулируемый источник питания постоянного тока по сравнению с регулируемым — В чем разница?

  • Нерегулируемый источник питания постоянного тока

Нерегулируемые источники питания — это те, которые являются очень простыми по своей природе, и все, что они делают, — это понижают входной переменный ток и, возможно, изменяют его, чтобы производить постоянный ток, и просто добавляют выходной конденсатор, чтобы уменьшить пульсации. Итак, много лет назад у нас были похожие блоки питания.

В нерегулируемых источниках питания выходное напряжение определяется соотношением витков трансформатора. Следовательно, выход напрямую связан с входным напряжением переменного тока.

Другая проблема, с которой вы можете столкнуться при использовании нерегулируемых источников питания, заключается в том, что выходное напряжение, возможно, является функцией входного напряжения. Кроме того, выходное напряжение будет колебаться в зависимости от тока, потребляемого от источника питания.

  • Регулируемый источник питания постоянного тока

Многие современные источники питания постоянного тока не работают так, как мы упоминали выше.Итак, любая бытовая электроника, которую вы бы купили в наши дни, будет иметь регулируемый источник питания постоянного тока. Однако вы все равно можете столкнуться с нерегулируемыми поставками от различных поставщиков электроники.

Стабилизированный источник питания постоянного тока может довольно активно управлять выходным напряжением. Помимо этого, он имеет дополнительную схему, с помощью которой выходное напряжение может быть увеличено или уменьшено.

Возможно, это сделано для компенсации колебаний входного напряжения, а также колебаний тока из-за нагрузки.Это выполняется непрерывно, чтобы компенсировать изменения входного напряжения, а также изменения тока, возникающие из-за нагрузки.

Факторы, которые следует учитывать перед покупкой устройства питания постоянного тока?

На рынке можно найти несколько источников питания постоянного тока, но не каждое из них может вам подойти. Итак, мы рассмотрим некоторые из основных соображений, которые вам необходимо иметь в виду. Обсудим: —

1. Точность

Это, пожалуй, самый важный фактор, который вы должны учитывать перед покупкой лучшего блока питания постоянного тока в 2020 году.

Технически это определяется как степень, в которой результат расчета, измерения и спецификации соответствует правильному стандарту или значению.

Помимо этого, он также определяет характеристики источника питания, близкие к теоретическому значению.

Как правило, значение точности определяется качеством процесса регулирования и преобразования. Как текущие настройки, так и напряжение имеют связанные с ними характеристики точности.

Точность обозначает точку, в которой выходные значения соответствуют международным стандартам.

Большинство источников постоянного тока имеют встроенные измерительные схемы для измерения как тока, так и напряжения.

На всякий случай полученный выходной сигнал нечеткий из-за незначительных ошибок в ЦАП, тогда лучший способ проверить точность — это измерить систему переменной мощности, с помощью которой получается значение настройки смещения.

2. Разрешение

Разрешение

, возможно, еще один фактор, на который следует обратить внимание, если вы думаете о покупке электронного блока питания постоянного тока.

Возможно, это небольшое изменение тока или напряжения, которое происходит из-за устройства источника питания.

Другими словами, мы можем сказать, что разрешение — это абсолютный процент от полной шкалы или значение.

Кроме того, ограничено количество ЦАП и дискретных уровней. Вы также должны иметь в виду, что чем больше битов, тем лучше разрешение вы получите.

3. Пульсация и шум

Выход источника питания постоянного тока обычно называется случайным отклонением и периодом.

Пульсация обычно определяется как собственная составляющая выходного напряжения переменного тока, которая получается из-за внутреннего переключения, которое происходит в источнике питания.

Итак, когда сигнал просматривается в частотной области, рябь демонстрирует ложные срабатывания.

С другой стороны, шум — это паразитное проявление внутри блока питания. Он возникает в результате высокочастотных всплесков выходного напряжения.

Шум в целом довольно случайный, и если вы посмотрите на него в частотной области, то вы заметите, что есть небольшое увеличение, которое происходит в базовой линии.

Итак, если вы тестируете шум и рябь, вам следует иметь в виду несколько вещей.

Во-первых, нагрузка может существенно повлиять на пульсацию, поэтому важно проводить измерения, возможно, в тех же условиях нагрузки.

Кроме того, на пульсации также может влиять входное напряжение, поэтому вам следует проводить тесты при различных входных напряжениях.

Кроме того, существует ряд производителей, которые применяют внешние конденсаторы на выходе источника питания для целей измерения.

Наконец, для целей измерения на канале осциллографа следует использовать предел полосы пропускания 20 МГц.

4. Устойчивость

Характеристики источника питания постоянного тока можно изменить, если использовать его в течение длительного времени. Таким образом, для поддержания стабильности источника питания необходимо выполнить надлежащую калибровку и проверку.

Значит, для большей стабильности температурный диапазон должен быть в районе 20-30 градусов.

5. Переходные характеристики

Переходная характеристика обозначается как величина отклонения выходного напряжения из-за изменения, происходящего при нагрузке.

Итак, когда происходит изменение нагрузки, то либо в источнике питания накоплено много энергии, либо, возможно, ее недостаточно. Следовательно, он не может немедленно отреагировать в новом состоянии.

Таким образом, выходные конденсаторы будут отвечать за недостаток энергии или избыток энергии.

Значит, они бы предпочли расходовать заряд, чтобы справиться с нагрузкой. В таком случае произойдет падение напряжения. Напротив, будет накапливаться избыточная энергия, что приведет к увеличению напряжения.

В контексте переходной характеристики есть несколько условий, при которых ее измерение может быть нарушено.

Некоторые из важных условий — это пусковой ток, скорость нарастания и конечный ток. Скорость нарастания напряжения имеет большое влияние в контексте переходного режима.

Причина в том, что чем быстрее будет изменение нагрузки, тем больше будет отклонение на выходе, прежде чем, наконец, источник питания справится с изменяющимися условиями.

Кроме того, начало и конец текущего уровня также могут иметь большое влияние.

Наконец, для точного измерения переходной характеристики пользователю предпочтительно два канала осциллографа.

Каковы применения источника постоянного тока?

В последнее время источники питания постоянного тока используются в качестве инструментов тестирования в ряде отраслей, лабораториях, научно-исследовательских центрах и исследовательских институтах. Кратко рассмотрим область применения: —

1. Центр ремонта мобильных и портативных компьютеров

Он широко используется в анодировании, зарядке аккумуляторов, гальванике, производстве светодиодов, производстве водорода, электролизе, электрохимических приложениях и многих других.

Кроме того, он также используется в автомобильных вуферах Transceiver, 3D-принтерах, светодиодных лентах и ​​усилителях звука.

2. Торгово-бытовые помещения

Источник питания постоянного тока

обычно используется в ряде приложений со сверхнизким и низким напряжением, особенно когда они питаются от солнечных энергетических систем или батарей. Кроме того, для ряда электронных схем также требуется источник питания постоянного тока.

Некоторые бытовые применения источников постоянного тока — это соединители, розетки, приспособления и выключатели, которые подходят для переменного тока.

Напротив, некоторые области применения в коммерческой недвижимости — это медицинские центры, офисные здания, магазины розничной торговли, торговые центры, отели, сельскохозяйственные угодья, многоквартирные жилые дома, гаражи, склады и т. Д.

3. Автомобильная промышленность

Источник питания постоянного тока

широко используется в автомобильных аккумуляторах, который, возможно, обеспечивает питание, необходимое для освещения, запуска двигателя и системы зажигания.

4. Телекоммуникационная промышленность

В аппаратуре телефонной связи используется стандартный источник питания — 48 В постоянного тока.Для обеспечения отрицательной полярности аккумуляторная батарея и положительный вывод системы электропитания заземлены.

5. Системы высокого напряжения постоянного тока

В системах передачи электроэнергии HVDC используется постоянный ток для передачи больших объемов электроэнергии.

Кроме того, для передачи на большие расстояния система HVDC оказывается менее дорогой, а электрические потери также низкими.

6. Топливный элемент

В электрических системах легких самолетов используется напряжение 12 В или 24 В постоянного тока, что аналогично автомобильным.

Несколько слов, чтобы сказать

Теперь вы узнали о ключевых факторах, улучшающих характеристики источника питания постоянного тока. Каким будет ваш следующий шаг? Какой ты собираешься купить? Низкая или высокая цена? Качественный? или производительность?

Не запутайтесь! Мы здесь, чтобы помочь вам!

Из всех 7 источников питания постоянного тока мы выбрали Tekpower Variable DC Power Supply как лучший из-за его уникального дизайна и портативности, которые могут использоваться в лабораториях, на производстве, в исследовательских целях и т. Д.Внутри он оснащен охлаждающим вентилятором с термодатчиком, который постоянно поддерживает охлаждение устройства.

Хотя продукт немного дорогой, он предлагает превосходные характеристики по сравнению с другими в списке. Также производитель предоставляет гарантию сроком на 1 год.

Примите правильное решение, прежде чем покупать блок питания постоянного тока. Надеемся, эта статья будет вам полезна. Кроме того, если у вас есть какие-либо сомнения или вопросы по поводу источника постоянного тока, напишите нам в разделе комментариев, приведенном ниже.

13 лучших источников питания постоянного тока

Вкратце, источники питания являются важной частью системы. Независимо от того, являетесь ли вы поклонником радиолюбителей, дипломированным инженером-электриком или обычным домашним любителем, вам нужны высококачественные источники питания постоянного тока, чтобы наполнить ваш текущий инженерный проект (каким бы он ни был). Поэтому существует множество моделей, из которых потребители могут выбирать, некоторые из них либо мощные, либо доступные. Очень редко вы встречаетесь с блоком питания и тем, и другим?

Что ж, мы решили сделать именно это.

Чтобы упростить жизнь нашей аудитории, мы обыскали рынок в поисках лучших источников питания постоянного тока , которые могли бы обеспечить достаточную мощность, при этом не нарушил бы банк.

Вот, мы нашли тринадцать. Продолжайте читать, чтобы узнать больше.

CSI305 BENCH, 30 В постоянного тока, 5,0 А, регулируемый источник питания с тремя выходами

CSI305 — блок питания для начинающих. Источник питания постоянного тока имеет тройной выход, который имеет двухканальный регулируемый выход с плавно регулируемыми током и напряжением, а также третий фиксированный выход.Этот мощный блок оснащен парой ЖК-дисплеев с большим экраном, со светодиодной подсветкой, которые непрерывно показывают напряжение и ток. Кроме того, устройство имеет встроенные ручки точной и грубой регулировки, которые помогают точно установить желаемый выход. Два основных канала работают независимо друг от друга и имеют функцию автоматического слежения, активируемого переключателем, в последовательном или параллельном режимах. Третий фиксированный выход имеет управляемый пользователем фиксированный выход 2,5 В, 3,3 В или 5 В. Таким образом, этот источник питания постоянного тока является одним из лучших источников питания постоянного тока, поскольку он надежен, точен и долговечен.Кроме того, этот блок питания подходит для разработки технологических продуктов и использования в лабораториях, учебных заведениях и производстве электроники, а также для питания основного оборудования индустрии связи.

Примечательные характеристики / особенности:

  • Режим независимых операций: позволяет источнику питания иметь 2 шт. при 0-30 В 0-5 А выходном напряжении и токе
  • Режим последовательного отслеживания: позволяет источнику питания получать максимальное выходное напряжение при 60 В, с максимальным выходным током 5 А
  • Режим параллельного отслеживания: позволяет источнику питания получать максимальное значение выходного напряжения 30 В, с максимальным выходным током 10 А
  • Имеет 3 положительных и отрицательных значения выходного напряжения и тока, 3 выхода могут работать одновременно
  • Внутренний вентилятор включается при температуре 113 ° F (45 ° C), чтобы снизить температуру блока для продления срока службы машины

Массив 3672A 35 В постоянного тока 22.Программируемый импульсный источник питания на 5 ампер

Этот высоконадежный высококачественный источник питания постоянного тока представляет собой программируемую модель, способную генерировать до 780 Вт — определенно является подходящим выбором для высокоэнергетических полевых работ или крупномасштабных электротехнических проектов.

Вдобавок ко всему, несмотря на такую ​​чистую мощность, Array 3672A способен тестировать низковольтные устройства. Его минимум составляет примерно 0,6 В при полном номинальном токе нагрузки, но максимальный ток может быть достигнут, даже если входное напряжение упадет до 0 В.Это невероятно полезная функция при тестировании энергетических приложений, таких как топливные элементы или солнечные элементы.

Кроме того, это устройство имеет улучшенную встроенную схему, которая расширяет область применения режима CR, а также его динамический отклик. Он также поддерживает инновационные режимы CPV и CPC, которые можно применять к источнику испытательного напряжения / тока с постоянной мощностью. Когда установленный уровень мощности нагрузки превышает выходную мощность источника питания, оба режима также способны эффективно предотвращать короткое замыкание.

В заключение, защитная схема Array 3672A обеспечивает защиту от перегрузки по мощности, перегрузки по току, перенапряжения, перегрева и обратной полярности, что делает этот источник питания постоянного тока одним из самых безопасных для тестирования.

Примечательные характеристики / особенности:

  • Интеллектуальная встроенная система охлаждения
  • Особо прочный корпус с резиновыми амортизаторами
  • Инновационные режимы CPV и CPC
  • Скорость преобразования D / A может достигать 100 кГц

Siglent SPD3303X-E 32 В постоянного тока 3.Блок питания с тройным выходом на 2 ампера

Компания Siglent, широко известная на рынке источников питания постоянного тока, предлагает еще один продукт, превосходящий все ожидания. Программируемый источник питания постоянного тока SPD3303X-E представляет собой внушительную модель весом 17,6 фунта с тремя изолированными выходными каналами: независимым, последовательным и параллельным.

Во-первых, это 4,3-дюймовый TFT-ЖК-дисплей и дисплей с волновым дисплеем в реальном времени. Это устройство дает пользователям много денег. Он также имеет пять (5) наборов сохранения / вызова памяти, что идеально подходит, если вы постоянно проводите тесты, и предлагает максимальную выходную мощность 220 Вт.Два выхода регулируются, а один выбирается из 2,5, 3,3 и 5 В.

Вдобавок ко всему, он имеет модифицированную встроенную систему защиты от короткого замыкания и перегрузки, которая хорошо подходит для стрессовых условий и полевых работ с высокими ставками, таких как производство и разработка.

В качестве бонуса, само устройство способно удовлетворить потребности различных электрических сетей с его совместимой конструкцией 100 В / 120 В / 220 В / 230 В.

Примечательные характеристики / особенности:

  • Три (3) независимо управляемых и изолированных выхода
  • Интеллектуальный вентилятор с пониженным уровнем шума (регулируемый по температуре)
  • Понятный пользовательский интерфейс с функцией отображения формы сигнала
  • Поддерживает расширение пространства для хранения данных
  • Поддерживает стандартные команды для программируемых инструментов (SCPI )

Блок питания Lavolta 30V 5A

Источник питания Lavolta

При весе около 12.Этот источник питания 30 В 5 А постоянного тока от Lavolta размером 46 фунтов и размером 14,8 x 8,5 x 7,5 дюймов по-прежнему остается невероятно портативным — благодаря эргономичной ручке для переноски. К его прочной конструкции может потребоваться некоторое время, чтобы привыкнуть, но эстетика изделия уступает его техническим характеристикам.

Имеет переключаемый вход 220/110 В и время восстановления около 100 микросекунд, это очень выносливое устройство, которое отлично работает в суровых условиях окружающей среды. Он подходит для испытательных стендов, инженерных школ и обычных домашних проектов.

В комплект входит шнур питания для США, два (2) тестовых провода и подробное руководство пользователя. Специально разработанный для безопасного, точного и простого использования, он также оснащен защитой от перегрузки и короткого замыкания, которая срабатывает автоматически (не требуется ручного ввода или запуска).

В целом, источник питания Lavolta Lab отлично подходит для коммерческого, образовательного и домашнего использования.

Примечательные характеристики / особенности:

  • Максимальный ток 5A
  • Простая конструкция делает его очень удобным для пользователя
  • Прочная, усиленная металлическая рама значительно увеличивает срок службы

Tekpower TP3005T Регулируемый линейный источник питания постоянного тока

Источник питания Tekpower TP3005T

Один из очевидных тяжеловесов в этом списке, Tekpower TP3005T — это надежный сверхмощный источник питания постоянного тока, подходящий для лабораторных работ, исследований, НИОКР и промышленного использования.Его линейный дизайн обеспечивает тихую и стабильную работу практически без пульсаций и с минимальной задержкой во время преобразования, преобразования и настройки.

С максимальным выходным напряжением до 30 вольт и током до 5 ампер, это устройство определенно является мощным.

Помимо источника переменного тока, TP3005T имеет несколько других полезных функций: два полностью рабочих режима, светодиодный дисплей с подсветкой и четким разрешением, точность ЖК-дисплея выше среднего (+/- 2 %%) и программируемое напряжение. и ток.В общем, сильный соперник на рынке, предлагающий большую мощность по довольно низкой цене.

Примечательные характеристики / особенности:

  • Два рабочих режима: режим постоянного напряжения и режим постоянного тока
  • Встроенное ограничение высокого тока для защиты
  • Встроенный охлаждающий вентилятор, активируемый термодатчиками

Rigol DP832 Triple Output

Ригол DP832

Если ваши обычные проекты или текущие полевые работы требуют, чтобы вы работали с тремя устройствами одновременно (макс.), Тройной выход DP832 от Rigol определенно подойдет.Его три выхода в сумме дают до 195 Вт, первые два могут работать до 90 Вт, а третий — до 15. Вы также можете легко переключаться между всеми тремя выходами, что идеально подходит для лабораторных условий.

С помощью этой модели пользователи могут установить удаленное соединение между источником питания постоянного тока и своим ПК, используя соединение USB, LAN или GPIB. Машина также полностью программируется и управляется с помощью SCPI.

Серия, к которой принадлежит этот конкретный блок — серия DP800 — также имеет три встроенных набора регистров: регистр байтов состояния, регистр стандартных событий и регистр сомнительного состояния.

Примечательные характеристики / особенности:

  • Три (3) переключаемых выхода
  • Удобный интерфейс
  • Комплексный светодиодный дисплей
  • Программируемые кривые напряжения

CSI3003X330 30 В пост.

CSI3003X330 Линейный источник питания

CSI3003X330 представляет собой полностью регулируемый источник питания постоянного тока с тремя выходами, который имеет два регулируемых выходных канала и один фиксированный, что идеально подходит для многозадачных сценариев или сценариев тестирования.Этот высокостабильный линейный настольный блок питания снабжен множеством функций, в том числе системой защиты от короткого замыкания и ограничения тока, встроенным охлаждающим вентилятором и печатными платами SMT для увеличения срока службы устройства.

Три выхода расположены на передней панели для облегчения доступа и быстрой настройки. Две переменные работают на 30 В и 3,0 А, а фиксированная — на 5 В и 3,0 А.

Два регулируемых выходных канала могут работать в нескольких режимах, включая постоянный ток и постоянное напряжение.Пользователи могут легко контролировать напряжение и ток с помощью регуляторов управления и определенной кнопки соответственно. ЖК-дисплей довольно большой и способен четко отображать текущие выходы.

Идеально подходит для лабораторных работ или образовательного использования, эта надежная и выносливая модель может выдерживать рабочие нагрузки, вдвое превышающие размер, а спецификации могут.

Примечательные характеристики / особенности:

Модель

ITECH IT6933A представляет собой хорошо программируемый источник питания постоянного тока, способный к «интеллектуальному» тестированию с помощью обширных инструкций SCPI.Это невероятно универсальное и отзывчивое устройство, которое с помощью нескольких простых команд может работать само по себе.

Очень удобно для удаленного тестирования и непредсказуемых полевых работ.

Кроме того, эта конкретная модель поставляется с функцией удаленного контроля, которая позволяет избежать падения давления, вызванного проводом, соединяющим электронную нагрузку, позволяя проводить измерения непосредственно на клемме тестируемого объекта. Это также значительно повышает точность.

Внешнее измерение также упрощается благодаря низкой пульсации, низкому уровню шума и встроенному цифровому вольтметру IT6933A.В целом, надежный и точный источник питания постоянного тока отлично подходит для крупных крупных проектов.

Примечательные характеристики / особенности:

  • Дисплей VFD
  • Интеллектуальная система управления вентиляторами / охлаждения
  • Функция удаленного контроля
  • Совместимость с SCPI

PPS2320A 32 В постоянного тока 3,0 А, программируемый линейный источник питания с тремя выходами

Этот программируемый источник питания постоянного тока 32 В представляет собой прочную, многофункциональную настольную модель, которая имеет 3 выходных канала и шесть режимов: постоянный ток, постоянное напряжение, параллельный, последовательный и разделенную шину (как отрицательное, так и положительное напряжение).Два выхода являются регулируемыми, на них можно подавать напряжение 0–32 В при токе 0–3 А. Третий — это фиксированный выходной канал, который позволяет пользователям выбирать 2,5 В, 3,3 или 5 В с доступным током 0–3 А.

Все цифровые элементы управления находятся на передней панели, но ими можно управлять через интерфейс ПК.

Что действительно привлекает нас в PPS2320A, так это его стоимость. За ту цену, которую вы платите, вы получаете очень надежное полнофункциональное устройство, в котором есть все хорошее, что вы можете найти в моделях, вдвое дороже.Например, он имеет экранированный тороидальный трансформатор, который питает все три выходных канала. Помимо стандартного встроенного вентилятора охлаждения, он поставляется с отдельными радиаторами для каналов с более высокой мощностью, что значительно увеличивает срок службы устройства. На передней панели есть четкие регуляторы напряжения и тока в виде чувствительных к скорости ручек для точной настройки. Более того, он имеет четыре программируемые кнопки памяти для мгновенного вызова.

Примечательные характеристики / особенности:

  • Один (1) фиксированный выход канала и два (2) регулируемых
  • Шесть (5) доступных конфигураций
  • Защита OCP и OVP
  • Интерфейс USB
  • Три (3) метода управления

CSI3644A 18 В постоянного тока 5 .Программируемый линейный источник питания 0 A

CSI3644A — один из самых интуитивно понятных и быстрых источников питания постоянного тока на рынке. Это программируемая модель, которая оснащена ЖК-дисплеем с подсветкой, цифровой клавиатурой и поворотным переключателем кода для быстрого программирования на месте. Маленький, легкий и удобный в транспортировке, это отличный прибор для постоянных текущих проектов или многократных испытаний.

Вы можете контролировать показания через свой ПК, если у вас есть модуль адаптера RS232 (опция) и соответствующее программное обеспечение.В остальном ЖК-дисплей отлично отображает показания напряжения, тока и мощности.

CSI3644A может работать в режиме постоянного тока, постоянного напряжения и постоянной мощности. Более того, он может принимать и сохранять до десяти (10) индивидуальных настроек, что идеально для мгновенного вызова. В целом, это сложный инструмент, подходящий для научных исследований, учебных лабораторий и аналогичных приложений.

Примечательные характеристики / особенности:

  • Хранимая память позволяет хранить до 10 настроек
  • Возможность защиты как по напряжению, так и по току (выше и / или ниже)
  • Максимальный ток может определяться пользователем
  • Легкий, очень портативный

Pyramid Universal Compact Bench

Источник питания пирамиды

На первый взгляд универсальная компактная скамья Pyramid может показаться типичным источником постоянного тока.Он легко преобразует переменный ток в постоянный, имеет приличное напряжение и мощность, а его размеры примерно такие же, как и у других настольных устройств.

Однако при ближайшем рассмотрении вы начнете понимать, почему мы включили его в этот список.

Этот универсальный источник питания постоянного тока от Pyramid поставляется с разъемами USB и винтовыми клеммами для легкого доступа и быстрого и надежного подключения — точнее, постоянного напряжения 13,8 В. Идеально подходит для использования с радиолюбителями и другой повседневной электроникой для любителей, эта модель имеет прочную конструкцию с резиновыми ножками для обеспечения безопасности другой электроники (и электрических устройств).

Он оснащен интуитивно понятной встроенной электронной системой защиты от перегрузки и короткого замыкания, обеспечивающей 100% безопасность блока питания для потребителей.

Эта модель была разработана для использования в качестве регулируемого источника питания для жилых домов, но в ней есть все функции, необходимые для инженерных проектов более крупного масштаба. Потребители могут легко использовать его для тестирования компонентов и оборудования устройств, а также для полевых операций, и он, несомненно, будет прекрасно работать каждый раз.

Примечательные характеристики / особенности:

  • Устройство не подвержено перегреву — даже до того, как вентилятор охлаждения включится.
  • Прочный корпус с резиновыми ножками
  • Винтовые клеммы
  • Управление мощностью, активируемое переключателем, устраняет необходимость во внешнем источнике питания
  • Постоянная сила тока до 30 AMP

CSI3646A Программируемый настольный источник питания постоянного тока

По общему признанию, одна из самых дорогих моделей в этом списке, программируемый источник питания CSI3646A более чем оправдывает свою цену.Он имеет массу функций, упакованных в его 14-фунтовый корпус, в том числе регулируемые выходы и выходы постоянного напряжения, возможности мониторинга ПК и приятную функцию вызова памяти для до десяти запрограммированных настроек.

Удивительно высокое разрешение при 1 мВ и максимальная выходная мощность 108 Вт, CSI3646A дает пользователям свободу постоянно настраивать, программировать и определять параметры своего проекта. Благодаря интуитивно понятной защите по напряжению и току (как при повышении, так и при понижении напряжения) он подходит для полноценной работы в самых разных условиях.

Примечательные характеристики / особенности:

  • Цифровая клавиатура и поворотная ручка для программирования
  • Максимальный ток может быть определен пользователем
  • До 10 сохранения / вызова настроек памяти

Extech 382275 Режим переключения

Extech 382275 Блок питания

Extech 382275 Switching Mode — это изящный источник питания постоянного тока, способный обеспечить пользователей мощностью до 600 Вт — абсолютная необходимость в электронных или инженерных проектах с большим объемом.Это очень стабильная модель лабораторного уровня, которую легко настроить и настроить. Он предлагает значительную степень контроля над выходами тока и напряжения.

Сам выход регулируется в диапазоне от 0 В до 30 В постоянного тока и от 0 до 20 А. Светодиодный дисплей отличается легким для чтения и очень удобным интерфейсом. Он имеет четыре режима работы: нормальный, предустановленный, установленный и дистанционное управление.

Да, Extech 382275 можно управлять дистанционно. Вы можете легко изменить настройки или запрограммировать устройство, не находясь рядом с ним.

Это, в сочетании с его невероятными энергетическими возможностями, делает его, пожалуй, лучшим выбором для полевых проектов или неконтролируемых сред с высокими ставками.

Примечательные характеристики / особенности:

  • Превосходная устойчивость к радиопомехам
  • Поставляется с собственным пультом дистанционного управления
  • Возможность 600 Вт
  • Программируемые пользовательские предустановки для напряжения и тока
  • Двойные светодиодные дисплеи (3-значные)

Заключение

Мы в компании Circuit Specialists надеемся, что вы нашли список лучших источников питания постоянного тока информативным.

Не забывайте всегда учитывать все факторы и проекты, для которых вы будете его использовать. Источники питания постоянного тока — мощные устройства! Имеет смысл только провести исследование и выбрать лучшее, чтобы получить наилучшие результаты.

Все еще нужна дополнительная информация или вы бы предпочли поговорить с кем-нибудь напрямую? Вы можете написать нам в любое время по адресу [email protected] или 1-800-528-1417.

Лучший настольный источник питания для любителей электроники 2020

В этом посте мы собираемся показать вам лучший настольный источник питания для любителей электроники.Итак, если вы любитель электроники и ищете настольный блок питания для своих экспериментов с электроникой, вы попали в нужное место.

Лучший настольный блок питания для любителей электроники

Лучший блок питания для вас зависит от того, над какими проектами вы собираетесь экспериментировать. Мы составили список лучших настольных блоков питания для любителей электроники. Вы можете продолжить чтение этой страницы, чтобы узнать о функциях, которые следует искать в настольном источнике питания постоянного тока.


Зачем вам настольный блок питания?

Настольный блок питания — действительно практичный инструмент, когда дело касается схем. Он позволяет запитать ваши схемы до того, как они будут завершены, протестировать отдельные схемы, провести эксперименты и т. Д.

Таким образом, вам не нужно иметь отдельный источник питания для каждого проекта, который вы хотите протестировать. Это упрощает вашу жизнь, позволяет намного быстрее проверять свои идеи и обеспечивает надежный источник питания при разных напряжениях.

К счастью, в настоящее время простые настольные блоки питания постоянного тока уже не такие дорогие. Вы даже можете создать свой собственный (что мы не рекомендуем, если вы новичок в электронике).

Вам также может понравиться читать: Лучшие мультиметры до 50 долларов США

На что следует обратить внимание при использовании настольного блока питания?

Давайте взглянем на особенности, которые следует учитывать, прежде чем выбирать лучший настольный блок питания для ваших нужд:

Максимальное напряжение и ток
Важно знать, какое напряжение и ток может обеспечить настольный источник питания, и может ли он обеспечить достаточную мощность для большинства ваших проектов.Если вы подаете в схему некоторое напряжение, источник питания должен выдерживать ток, потребляемый. Вам следует искать настольные блоки питания постоянного тока. Это показывает возможные значения тока, которые он может потреблять при различных напряжениях.

Контроль ограничения тока
Контроль ограничения тока — отличная функция, особенно если вы новичок. Эта функция позволяет вам установить безопасный предел тока для защиты ваших компонентов.

Количество каналов
Во многих случаях использование одного выходного канала делает свою работу, и это более доступно.Источники питания с несколькими выходами дороже, но могут быть удобны в случаях, когда вам нужны разные источники одновременно.

Линейные и переключаемые
Источники питания доступны в импульсном (переключающем) или линейном исполнении. Разница между ними в том, как они вырабатывают постоянный ток. У каждого из них есть свои преимущества и недостатки, но в целом импульсные источники питания обычно легче и компактнее. С другой стороны, линейные источники питания лучше подходят для питания чувствительных аналоговых схем, поскольку они имеют более низкий электрический шум.

Сравнение стендовых источников питания

Tekpower TP1803D Регулируемый линейный источник питания постоянного тока 0-18 В 0-3A

56,99 $


в наличии


3 новых
от 56 $.99

Бесплатная доставка


по состоянию на 21 февраля 2021 г. 23:46

Это простой блок питания с одним каналом, который может подавать напряжение до 18 В и ток до 3 А.Он линейный, обеспечивает сверхстабильный выход и низкий уровень пульсаций. Вы можете регулировать напряжение и ток с помощью двух поворотных переключателей, а также включать и выключать их с помощью кнопочного переключателя на передней панели. В комплект также входят два тестовых провода для шнура питания с зажимами типа «крокодил».

Это очень хороший блок питания согласно комментариям к Amazon. Единственным недостатком является то, что настройка поворотных переключателей очень чувствительна, и иногда бывает сложно установить точное напряжение, которое вы хотите.Однако сейчас появилась новая версия этого блока питания с грубой и точной регулировкой, которая может обеспечить до 30 В и 5 А.


Последнее обновление 21 февраля 2021 г., 23:46

Если вам нужны разные блоки питания одновременно, существует стендовый блок питания той же марки, который может обеспечить три разных выхода: два из них с максимальной выходной мощностью 30 В 5 А, а другой может обеспечивать 5 В 3 А.


Последнее обновление 21 февраля 2021 г., 23:46


Eventek KPS305D Регулируемый импульсный источник питания постоянного тока 0-30V 0-5A


нет в наличии


по состоянию на 21 февраля 2021 г. 23:46

Этот блок питания от Eventek также является отличным выбором для любителей и одним из самых дешевых, которые вы можете найти.Он компактен и может обеспечивать от 0 до 30 В и от 0 до 5 А с точностью 0,1 В и 0,01 А. Он имеет четыре поворотных переключателя: два для грубой настройки и два для точной настройки.

Может работать в режиме постоянного напряжения и постоянного тока. Он оснащен защитой от предельного тока, тепловой защитой, защитой от перегрузки по напряжению и защитой от короткого замыкания. В комплект также входят измерительные провода.

Есть аналогичный блок питания, который может обеспечить до 30 В и 10 А.Это идеально, если вы собираетесь работать в более высоком диапазоне тока.


Последнее обновление 21 февраля 2021 г., 23:46


Tekpower TP3005T Регулируемый линейный источник питания постоянного тока, 0-30 В 0-5A

79 долларов.98


в наличии


2 новых
от 79,98 $
1 б / у от 70,00 $

Бесплатная доставка


по состоянию на 21 февраля 2021 г. 23:46

Этот настольный источник питания постоянного тока от Tekpower может обеспечить до 30 В и 5 А.Его функции включают: линейный режим, грубую и точную настройку, функцию блокировки кнопок, работу при постоянном напряжении или постоянном токе. Это также позволяет установить ограничение тока или ограничение напряжения. Это определенно отличный выбор для новичка или любителя электроники.


KORAD KA3005P — Программируемый регулируемый линейный источник питания постоянного тока 30 В, 5 А

139 долларов.99


в наличии


2 новых
от 139,99 $
1 б / у от 88,06 $

Бесплатная доставка


по состоянию на 21 февраля 2021 г. 23:46

Korad KD3005P — это линейный источник питания, обеспечивающий до 30 В и 5 А и имеющий 4-разрядный светодиодный дисплей.Он поставляется с множеством отличных полезных функций за свою цену. Что действительно полезно, так это кнопки памяти (M1, M2, M3, M4). Они позволяют сохранять различные настройки по умолчанию (напряжение и ток). Например, вы можете сохранить в M1 конфигурацию 3,3 В 500 мА, а в M2 5 В, 1 А. Каждый раз, когда вы хотите переключаться между этими настройками, вам просто нужно нажимать кнопки памяти — нет необходимости вращать ручку.

Вы также можете подключить блок питания к компьютеру и использовать их программное обеспечение для управления блоком питания с дополнительными функциями.Например, вы можете выводить последовательность напряжений через определенные промежутки времени. Кроме того, вы можете сохранить все данные в текстовом файле, который отлично подходит для последующего анализа и построения графика.

Рекомендуемая литература: Лучшие паяльники для начинающих и любителей


Завершение

В этом посте мы показали вам лучшие настольные блоки питания для любителей электроники. Все представленные блоки питания — хороший выбор. Однако лучший источник питания для вас будет зависеть от ваших потребностей и от того, сколько вы готовы потратить.

Если у вас ограниченный бюджет и вам подходит рабочий диапазон от 0 до 18 вольт и от 0 до 3 ампер, тогда выберите Tekpower TP1803D.

Программируемый источник питания KORAD K3005P — Если вас не беспокоит, сколько вы потратите, KORAD K3005P — отличный выбор. Кнопки памяти действительно полезны для сохранения настроек напряжения / тока, которые вы используете чаще. Более того, программное обеспечение предоставляет дополнительные функции, регистрацию данных и многое другое.

Купить на Amazon.comBuy on Amazon.co.ukBuy on eBay

Наконец, если вам нужен более широкий рабочий диапазон, выберите Eventek KPS3010D, который может обеспечить напряжение до 30 В и 10 А.

Надеемся, этот список был вам полезен. Спасибо за чтение.


[Рекомендуемый курс] Изучите ESP32 с Arduino IDE

Зарегистрируйтесь в нашем новом курсе ESP32 с Arduino IDE. Это наше полное руководство по программированию ESP32 с Arduino IDE, включая проекты, советы и уловки! Регистрация открыта, поэтому зарегистрируйтесь сейчас .


Другие курсы RNT

Связанные

Выбор наилучшего регулируемого источника питания для электроники

При выборе регулируемого источника питания вам необходимо знать электрические характеристики, необходимые для устройства, такие как линейное регулирование, а также сколько мощности будет использоваться для каждого приложения . Каждому устройству для работы требуется разная выходная мощность (постоянного тока), а блок питания должен регулировать напряжение, предохраняя устройство от перегрева.Источник питания — это первое место для получения электричества, большинство из которых предназначены для обработки колебаний электрического тока и при этом обеспечивают регулируемую или постоянную выходную мощность. Блок питания будет получать питание от электрической розетки и преобразовывать ток из входной мощности (переменного тока) в постоянный.

Источники питания подразделяются на две категории: нерегулируемые и регулируемые. Основное различие между этими двумя типами связано с входным и выходным напряжением, необходимым для определенных устройств. Нерегулируемые источники питания предназначены для создания определенного напряжения при определенном токе, поскольку они обеспечивают постоянное количество энергии.Однако выходное напряжение будет уменьшаться по мере увеличения выходного тока, поскольку нерегулируемые источники питания не вырабатывают постоянного напряжения, как стабилизированные источники питания, они всегда должны соответствовать требованиям к напряжению и току устройства, которое они питают.

Регулируемые источники питания часто лучше

Без регулятора для стабилизации выходного напряжения любое изменение входного напряжения будет отражаться на выходном напряжении. Эти небольшие изменения выходного напряжения называются пульсациями напряжения.Если требования к источнику питания и нагрузке точно совпадают, обычно это не проблема. Однако, если пульсирующее напряжение достаточно велико по отношению к выходному напряжению, это повлияет на поведение цепей и устройств. Чтобы уменьшить влияние пульсаций напряжения, конденсатор фильтра может быть помещен между положительным и отрицательным выходами источника питания. Конденсатор, устойчивый к перепадам напряжения, сглаживает выходное напряжение, обеспечивая нормальную работу.

Регулируемые источники питания поддерживают напряжение на желаемом уровне и идеально подходят практически для всех типов электронных устройств благодаря плавной и стабильной подаче напряжения, которую они предлагают.Чистое питание — это абсолютное требование для питания чувствительной электроники, поскольку важно, чтобы они получали правильное количество напряжения независимо от входа. У них есть регуляторы напряжения на выходе, что гарантирует, что выходное напряжение всегда будет оставаться на номинальном значении источника питания, независимо от тока, потребляемого устройством. Любое изменение входного напряжения не повлияет на выходное напряжение из-за регуляторов. Это работает до тех пор, пока устройство не потребляет ток, превышающий номинальный выходной ток источника питания.

Регулируемые импульсные источники питания

Доступны два основных типа регулируемых источников питания: линейные и SMPS. Линейные источники питания или регуляторы принимают входную мощность, затем понижают напряжение с помощью трансформатора, затем выпрямляют и фильтруют входной сигнал в выход постоянного тока. Они обеспечивают выходное напряжение, рассеивая избыточную мощность, и регулируют выходное напряжение или ток, рассеивая избыточную электрическую мощность в виде тепла. Напротив, импульсный источник питания (SMPS) использует регулятор для эффективного преобразования электроэнергии путем передачи мощности от источника постоянного или переменного тока на нагрузки постоянного тока при преобразовании напряжения и тока.

Основное различие между этими двумя процессами заключается в том, что они используют разные компоненты. В результате линейные регуляторы обычно менее эффективны, используют более крупный и тяжелый трансформатор, а также более крупные компоненты фильтра. В то время как SMPS обеспечивает лучшую эффективность из-за своей высокой частоты переключения, что позволяет им использовать меньший и менее дорогой трансформатор, а также более легкие и менее дорогие компоненты фильтра.

Опираясь на 40-летний опыт

Мы вносим свой 40-летний опыт проектирования и производства, охватывая множество различных рынков, и с нетерпением ждем возможности обсудить, как мы можем поставлять продукцию мирового класса для OEM-производителей по всему миру.За прошедшие годы мы создали несколько заказных импульсных источников питания (SMPS) на основе спецификаций клиентов. Что делает нас уникальными, так это то, что мы можем разрабатывать магнитные компоненты, проектировать функциональные тестеры, проводить исследования надежности, обеспечивать собственные разработки, поставлять компоненты радиаторов и получать разрешения, такие как UL / CE / CSA.

Наше флагманское предприятие в Ченнаи, открытое в 2006 году, находится в ОЭЗ для производства электроники, предлагая экономические стимулы для импорта и экспорта.Этот основной объект находится в 90 минутах езды от морского порта Ченнаи и в 20 минутах от международного аэропорта, с дополнительными автомобильными и железнодорожными дорогами, связями с остальной частью Индии и за ее пределами, а также преимуществами инфраструктуры с более быстрой таможенной очисткой импорта и экспорта. У нас также есть рабочая сила, как техническая, так и ручная, для быстрого масштабирования в соответствии с требованиями клиентов.

Чтобы узнать больше по этой теме, пожалуйста, свяжитесь с нами .

Лучший лабораторный источник питания [Как выбрать и купить лучший в 2021 году]

Ваша лаборатория — это место, где вы тестируете каждый свой проект.Иногда все идет хорошо, но иногда мы сталкиваемся с некоторыми странными ситуациями.

Эти странные ситуации иногда возникают из-за недостатка знаний, а иногда из-за того, что источник питания в наших лабораториях не такой умный и безопасный.

Выбрать лучший лабораторный источник питания, чтобы избежать указанных ситуаций, может оказаться очень сложной задачей. Может не хватать знаний, что смотреть при покупке нового, какие параметры важно искать? какие известные бренды в отрасли?

И, возможно, еще много вопросов.

В этом посте я стараюсь изо всех сил, чтобы помочь вам найти лучший источник питания, независимо от того, новичок вы, любитель или студент.

Надеюсь, этот пост поможет вам и вам понравится.

Источники питания известных производителей для настольных лабораторий

На рынке много производителей. Не все из них хороши. Есть также некоторые плохие производители, которых нам следует избегать, если мы хотим инвестировать приличную сумму денег.Ниже представлены бренды, зарекомендовавшие себя в отрасли на протяжении многих лет.

Рейтинг этих брендов не зависит от того, как я их перечислил. Мне просто так понравилось. Давайте посмотрим, как эти бренды конкурируют между собой в Google.

Помните, что приведенный выше график трендов жив. На момент написания этого поста Rigol соревнуется со всеми. Со временем это может измениться.

Лучший лабораторный блок питания

Источник питания — очень важный инструмент для лаборатории или мастерской.

Почему?

  • Стенд, лаборатория или мастерская — это место, где вы ежедневно тестируете различные схемы и проекты.
  • Каждая схема и проект имеют свои собственные номинальные значения напряжения и тока. Вы не можете разрабатывать или покупать расходные материалы для конкретного проекта каждый раз, когда у вас появляется новый проект. В этом нет никакого смысла.
  • Самое главное, вы все проверяете. Поэтому ваши поставки должны быть чистыми и безопасными.
  • Он защищает вашу схему от выгорания из-за непреднамеренного приложения высокого напряжения.

Совершенно очевидно, что приличный лабораторный источник питания — ваша основная потребность, если вы действительно серьезно относитесь к изучению электроники.

Для профессионалов в области электроники, любителей или новичков лучший лабораторный источник питания, который я рекомендую и полевые профессионалы, — это Tekpower TP3005T, Siglent Technologies SPD3303X-E или Rigol (DP823).

Эти лучшие лабораторные блоки питания от известных производителей, очень доступные для любого бюджета и имеют годичную гарантию.Они лучше всего, потому что они имеют меры безопасности, регулируемое напряжение, защиту от перенапряжения и короткого замыкания, а также возможность ограничения тока, чтобы уберечь ваши устройства от сгорания.

В оставшейся части статьи я дам больше информации о моделях, которые я рекомендую выше.

1. Лучший лабораторный блок питания от Tekpower (TP3005T)

Tekpower — популярный бренд из Калифорнии, известный производством качественной электроники. Мне очень нравится он и его продукция. На самом деле, их выпускают очень много, но я выбираю TP3003p.Насколько мне известно, это лучший лабораторный блок питания в его лаборатории.

Важные характеристики

  • Это линейное значение очень чистое и подходит для работы с усилителями
  • Его высокий диапазон тока 0-5А. Это уже слишком. Знаешь, единственный раз, когда мне самому нужен был большой ток, был 2А. Делал проект с модулем GSM 900a. Во время передачи данных он имел пиковый ток 2А. Вместо этого я никогда не использовал такой ток.
  • Диапазон напряжения 0-30В
  • Защита от перенапряжения
  • Ограничение тока, означающее, что вы можете безопасно играть со своим проектом. Ограничьте ток, тогда не беспокойтесь о напряжении, ваша мощность останется в безопасном диапазоне вашего проекта.
  • Классный, чистый и большой дисплей, на котором цифры видны под любым углом
  • Изменяемые и регулируемые значения тока и напряжения

Таким образом, Tekpower TP3005T (Amazon Link) — красивое электронное устройство с металлическим корпусом, специально разработанное для безопасной и эффективной работы над вашими крутыми проектами, но по очень низкой цене.Теперь, если вы живете в любом месте этого прекрасного мира, лучшей альтернативой этой модели является NICE — Блок питания (ссылка на Aliexpress) , вы также можете проверить это с чрезвычайно низким ценовым диапазоном.

2. Лучшее лабораторное оборудование от Siglent Technologies (SPD3303X-E)

Как я уже говорил в других своих сообщениях, Siglent является новым брендом на рынке, но со временем он зарекомендовал себя как самый ценный бренд. Я испытываю чувство доверия от этого бренда, и мне нравится, что он второй после Tekpower.

В лабораторных условиях, если вы действительно специалист по электронике, вам понадобится комплект поставки в виде полного комплекта.Вышеупомянутый вариант предназначен для небольшой лаборатории или для человека-любителя, идеально подходит для студентов.

Теперь давайте посмотрим, что я имею в виду под пакетом, увидев спецификации этого парня, SPD3303X-E

Важные характеристики

  • Он имеет три выхода, что означает, что вы можете запитать что угодно одновременно. Делители напряжения и тока не нужны
  • Среди трех выходов один порт предназначен для фиксированного напряжения, т.е. вы можете переключаться между 5 В, 3,3 В и еще несколькими
  • Это 220 Вт, что делает его настоящей электростанцией
  • Максимальный диапазон напряжения 32, с разрешением 10 мВ
  • Есть интерфейсы USB / LAN
  • Вы можете настроить выход последовательно и параллельно, что иногда бывает очень много
  • Поддерживает команды SCPI и имеет доступный драйвер LabView
  • Это не шумно, и это здорово.Никто не любит шумную поставку.
  • Получил лучшее регулирование

Это тот параметр, который мне нравится в нем, и я хочу, чтобы он присутствовал в каждом источнике питания в моей лаборатории. Таким образом, Siglent SPD3303X-E (Amazon Link) подходит для любой лаборатории. У вас три выхода, красивый внешний вид, надежность и, самое главное, заслуживающий доверия бренд.

3. Лучший лабораторный блок питания от Rigol (DP823)

Вы были в электронике, я уверен, что вы уже слышали об этом бренде.Вы можете заметить, что я всегда начинаю с бренда, потому что это я. Я верю в бренды и просто не люблю тратить деньги на случайные товары.

Эта модель имеет практически те же функции, что и Siglent. Так что я не буду повторять их здесь снова.

Важные характеристики

  • Это высококачественный программируемый лабораторный источник питания с тремя переключаемыми выходами
  • Наряду с USB / LAN, он также имеет RS232 или GPIB, что означает, что вы можете управлять им удаленно
  • Имеет как OVP, так и OCP
  • Пользовательский интерфейс лучше, чем у Siglent

Таким образом, Rigol DP823 (Amazon Link) стоит немного дороже, но если вы ищете надежный продукт на весь срок службы для своей лаборатории.Эта модель стоит ваших вложений.

4. Лучший недорогой лабораторный блок питания от HANMATEK (HM305)

Я перечисляю это, потому что чувствую, что у некоторых из вас может быть немного ограниченный бюджет, и они не тратят слишком много на источник питания. Не знаю, но, возможно, вы захотите купить лучший лабораторный блок питания за ограниченные деньги.

Возможно. Но позвольте мне сказать вам, что вы должны пойти на компромисс в отношении определенных функций. Если вы уверены, что вам не нужны дорогостоящие функции и вам нужны базовые лабораторные принадлежности.Тогда я считаю, что Hanmatek HM305 лучше всего подходит для вас.

Важные характеристики:

  • Эта модель основана на технологии коммутации, что означает, что вы можете получить высокую мощность при небольшом размере.
  • Точная линия и регулировка нагрузки
  • В период включения / выключения нет переходных процессов (примечание: лучший способ избежать этого, если вы используете источник питания с такими проблемами, отсоедините тестируемое устройство при включении источника питания), чтобы все ваши тестовые устройства были в безопасности .Если в блоке питания возникнут временные проблемы, просто не тратьте на них какие-либо средства, так как они могут похоронить ваши ценные устройства.
  • Большой цифровой дисплей
  • Регулируемое выходное напряжение 0-30 В
  • 0-5А ток

Таким образом, Hanmatek HM305 (ссылка на AliExpress) не тяжелый, а форма и дизайн убивают. По качеству он имеет ограничение по току и защиту от короткого замыкания. Бонус, если вы новый покупатель на AliExpress, используйте купон «SINGLENEW11» и получите скидку 4 доллара.


В оставшейся части статьи я рассмотрю разницу между линейным и импульсным блоком питания.

Линейные и импульсные блоки питания

Линейный источник питания — это обычный тяжелый источник питания, в котором используется простая схема для преобразования переменного тока в постоянный. Он использует трансформатор для повышения или понижения подаваемого переменного напряжения перед подачей на схему регулятора.

С другой стороны, импульсный источник питания напрямую преобразует переменный ток в постоянный без какого-либо трансформатора, а затем преобразует этот высокий постоянный ток в высокочастотное переменное напряжение, которое затем используется схемой регулятора для получения желаемого постоянного напряжения и тока.

Как теперь понятно, линейный режим намного проще, чем режим переключения. Переключатель режимов очень легкий и имеет небольшие размеры. За исключением небольшого размера, он не может превзойти линейный режим по таким свойствам, как стабильность и тяжелый режим с небольшим шумом, пульсацией и электромагнитными помехами. И самое приятное то, что коммутационный режим дешевле линейного, так как внутри него нет объединенного трансформатора.

Вы знаете, это всегда компромисс между линейным и импульсным режимом в отношении размера, надежности и мощности. Для лаборатории или в ситуации, когда вам не нужно переносить или перемещать источник питания туда-сюда, я рекомендую линейный режим.

Выбор между этими моделями

О мальчик! мне очень трудно ответить. Причина в том, как мне узнать, каковы ваши требования? Выбор источника питания зависит от ваших требований. Все, что я мог сделать, это подготовить список лучших настольных источников питания, которые я лично хочу иметь в своей лаборатории. Но если вы подтолкнете меня выбрать из списка. Я бы выбрал Ригол. Это немного дороже, но я знаю, что он прослужит вечно, поэтому инвестировать в устройство на всю жизнь — неплохое решение.

Есть другие варианты для начинающих

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам сделать собственный лабораторный источник питания. Было бы очень хорошее решение.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания. Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде.Это похоже на обучение на практике.

Я рекомендую для начала комплект блока питания Elenco (Amazon Link) . Он доступен по цене, высокого качества и хорошо документирован, чтобы направлять вас на каждом этапе. Поверьте, вы многому научитесь. Вы узнаете, как паять, собирать и делать конечный продукт, который вы всегда видите в разных магазинах.

Мои последние слова

Действительно важный фактор, который я действительно хочу подчеркнуть, это то, что почти каждый источник питания, разработанный для лабораторных целей, имеет множество мер безопасности, таких как ограничение тока, перенапряжение и защиту от короткого замыкания.Эти функции предохраняют ваши тестируемые устройства от любых электрических повреждений.

Для меня следующие элементы необходимы в любом лабораторном источнике питания.

  • Произведено надежным брендом
  • Должен быть недорогой, чтобы новичок мог себе это позволить. Но это не значит, что нельзя идти на компромисс по поводу его качества.
  • Должен соответствовать всем задачам, для которых предназначен источник питания
  • Должно быть хорошо
  • Он должен быть очень простым в использовании, не нужно использовать направляющую

И это все, что я хочу поделиться с вами о лучших лабораторных источниках питания, которые вы можете купить прямо сейчас на Amazon.

Надеюсь, это вам чем-то помогло.

Другие полезные сообщения

Спасибо и удачной жизни.

Learning Регулируемый источник питания и его конструкция [Простое объяснение]

Привет. Надеюсь, вы хорошо проводите время. В этом посте я делюсь своими знаниями о регулируемом источнике питания.

Регулируемый — это общий термин, используемый для обозначения любого типа источника питания, который имеет стабильное выходное напряжение или ток независимо от входа или нагрузки. Это может быть линейный источник питания, регулируемый источник питания или регулируемый источник питания.

Единственное условие: он должен иметь выходное напряжение или ток независимо от входа (напряжение) или выходной нагрузки (сопротивления или тока).

Если вы искали просто, чтобы узнать, что такое регулируемый источник питания, я уже дал вам ответ. Но если вы хотите изучить его полностью, вы можете следить за моим обучением вместе со мной.

Будет весело.

Почему регулируемый источник питания?

В основном блоки питания рассчитаны на определенную нагрузку и среду.Но иногда напряжение питания, нагрузка и температура окружающей среды продолжают изменяться, изменяя параметры компонентов и, следовательно, выходное напряжение. Изменения выходного напряжения нежелательны.

Позвольте мне объяснить, почему изменение выходного напряжения нежелательно. Устройства имеют минимальное и максимальное входное напряжение и пороговые значения тока. И вы должны соблюдать эти пороговые значения, иначе вы можете повредить устройство.

Если выходное напряжение вашего источника питания изменится, есть вероятность, что оно превысит эти пороговые значения.Вот почему нам нужно постоянное выходное напряжение. И это достигается за счет регулируемого источника питания.

Стабилизированным источником питания может быть любой источник питания, поскольку я сказал, что он должен обладать постоянным выходным напряжением. Линейный источник питания, регулируемый источник питания или регулируемый источник питания могут быть регулируемым источником питания. Он может иметь любое значение напряжения, например 5 В, 10 В, 12 В и многие другие.

Важно помнить, что стабилизированный источник питания не всегда рассчитан только на постоянное выходное напряжение, он может быть рассчитан на постоянный выходной ток.

Таким образом, вы сможете понять, в чем фактическая разница между регулируемыми и нерегулируемыми источниками питания. Позвольте мне похвалить его за ваши примечания:

Нерегулируемый источник питания не имеет выходного напряжения или выходного тока независимо от входного основного напряжения или нагрузки.

Генеральный проект регулируемого источника питания

Если вы попросите меня разработать регулируемый источник питания. Сразу спрошу, это регулируемый линейный источник питания с фиксированным напряжением, или регулируемый источник питания, или переменный источник питания?

В общем, изучение было бы идеальным решением для этого, так как основной принцип работы всех регулируемых источников питания одинаков.

Общая блок-схема

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные участки схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Вам нужно понимать, какой блок что делает.

Сначала мы спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для наших проектов.

Входной трансформатор

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии. В зависимости от вашей страны переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В.

Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого уровня.

Будьте осторожны, играя с этим устройством. Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами.

Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным, какая линия находится под напряжением, идущим к трансформатору.

Схема выпрямителя

Если вы думаете, что трансформатор просто снизил напряжение до желаемого регулируемого постоянного напряжения.

Прошу прощения, вы ошибаетесь, как и я.

Пониженное напряжение все еще равно переменному току. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя преобразует переменное напряжение в постоянное.В основном, есть два типа выпрямительной схемы; полуволна и полная волна.

Однако нас интересует полный выпрямитель, так как он более энергоэффективен, чем полупрямой.

Сглаживающий конденсатор / фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящую сеть в постоянный ток, но, к сожалению, не может сделать из нее чистый постоянный ток.

Выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти колебания и обеспечивать совместимость напряжения для регулирования.

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Самый лучший фильтр в нашем случае — конденсаторный. Вы, наверное, слышали, конденсатор — это устройство для накопления заряда.

Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение.

Регулировка напряжения очень важна, потому что нам не нужно изменение выходного напряжения при изменении нагрузки.Всегда требуется нагрузка, не зависящая от выходного напряжения.

ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Надеюсь, вы разработали базовую концепцию конструкции регулируемого источника питания.

давайте продолжим с реальной принципиальной схемой нашего конкретного источника питания с регулируемым напряжением 5 В, чтобы вы могли получить очень четкое представление о конструкции.

Я буду использовать программное обеспечение NI Multisim, надеюсь, вы знакомы с ним.Если вы с ним не знакомы, нет проблем. Это не обязательно. Вы можете использовать любое программное обеспечение. Основная цель — изучить программное обеспечение для проектирования, а не для моделирования.

Конструкция регулируемого источника питания (с фиксированным напряжением)

Следующие этапы проектирования охватывают проектирование регулируемого источника питания с фиксированным выходным напряжением или регулируемого / регулируемого источника питания. С помощью этих шагов вы можете спроектировать свой регулируемый источник питания.

Я использую конкретный пример 5V, потому что я думаю, что таким образом было бы лучше всего понять весь процесс проектирования.

Вы думаете, я бы начал объяснение с трансформатора, но это не так. Трансформатор выбирается не сразу.

Ниже приведена принципиальная схема указанного проекта. Вы получаете основное питание, напряжение и частота могут зависеть от вашей страны; предохранитель для защиты цепи; трансформатор, выпрямитель, конденсаторный фильтр, светодиодный индикатор и стабилизатор IC.

Блок-схема реализована в NI Multisim, хорошей программе моделирования для студентов и начинающих электронщиков.Я рекомендую потратить немного времени на то, чтобы поиграть с ним. Поскольку, на мой взгляд, вы должны хорошо разбираться в программном обеспечении для моделирования, чтобы получать удовольствие от изучения базовой электроники.

Пошаговый метод проектирования источника питания 5 В постоянного тока

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения.В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Далее нам нужно знать номинальные значения напряжения, тока и мощности выбранной ИС регулятора.

Это делается с помощью таблицы данных регулятора IC. Ниже приведены номинальные значения и схема контактов для LM7805.

Спецификация 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки.

И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В. Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и трансформатором тоже стоит выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В или 12 В.

Шаг 3: Выбор диодов для моста

Видите ли, выпрямитель сделан из диодов, расположенных по некоторой схеме.Для изготовления выпрямителя нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы.

Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае. Вместо отдельных диодов вы также можете использовать один отдельный мост, который входит в комплект IC.

Но я не хочу, чтобы вы использовали здесь только для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки.И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора.

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать следующие факторы: его напряжение, номинальную мощность и значение емкости. Т

Номинальное напряжение рассчитывается от вторичного напряжения трансформатора.Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение.

Итак, если вторичное напряжение составляет 17 В (пиковое значение), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки i-e 500 мА в нашей конструкции, Vo = выходное напряжение i-e в нашем случае 5 В, f = частота

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно. Затем, используя формулу конденсатора, практический стандарт, близкий к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула из книги «Электронные устройства Томаса Л. Флойда» приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — сопротивление нагрузки. А Rf — это коэффициент пульсаций, который для хорошей конструкции должен быть менее 10%. На этом мы заканчиваем проектирование блока питания на 5 В.

Сделайте блок питания безопасным

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же в нашем простом источнике питания должен быть предохранитель на входе. Входной предохранитель защитит наш источник питания в случае перегрузки. Например, наша желаемая нагрузка может выдержать 500 мА.

Если в случае, если наша нагрузка начнет работать неправильно, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки. Основное правило выбора предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Комплект блока питания 5 В (DIY)

Итак, мы получили базовые знания о том, как устроен простой блок питания на 5 В.

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.Было бы очень хорошее решение.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике.

Я рекомендую для начала комплект источника питания Elenco (Amazon Link). Он доступен по цене, высокого качества и хорошо документирован, чтобы направлять вас на каждом этапе. Поверьте, вы многому научитесь.Вы узнаете, как паять, собирать и делать конечный продукт, который вы всегда видите в разных магазинах.

Конструкция регулируемого источника питания (с регулируемым / регулируемым выходом)

В большинстве случаев фиксированное напряжение нам не требуется. Иногда нам нужен источник переменного тока.

Например, чтобы проверить токи коллектора транзистора при различных базовых напряжениях, нам понадобится регулируемый источник питания. И это переменное напряжение необходимо регулировать.

Процедура проектирования такая же, как я объяснил выше, с небольшими изменениями в регуляторах мощности.

На этот раз нам потребуется переменный резистор, чтобы, изменяя его сопротивление, мы получали разные напряжения. Ниже приводится схема регулируемого источника питания или переменного источника питания:

До светодиодной части схема такая же, как и для стабилизированного источника питания 5 В при 500 мА. Схема становится сложной после светодиодной части, не так ли? Не бойся.Все очень просто. Переменный резистор предназначен для изменения выходного напряжения.

Диоды используются для защиты схемы от обратного тока. Теперь давайте посмотрим на следующем видео, как изменение резистора изменяет выходное напряжение.

Преимущества регулируемого источника питания

Источник питания с регулируемым выходом имеет много преимуществ. Следующее имеет ключевое значение.

  • низкий уровень шума
  • недорогая
  • простота
  • надежность

Регулируемый блок питания очень прост в конструкции, вы могли почувствовать это в этом посте.Простой дизайн делает его очень экономичным. Эти блоки питания имеют невысокую стоимость и очень надежны.

Они относительно бесшумны. ИС линейных регуляторов, которые используются на выходе, имеют низкие пульсации выходного напряжения, что делает их наиболее подходящими для приложений, где важна чувствительность к шуму.

Заключение

Проектный блок питания подойдет для поддержки других ваших небольших проектов или принесет вам хорошие оценки / деньги, если вас назначат на аналогичный проект.Я не знаю почему, но я уверен, что если вы выполните те же простые шаги со мной, вы получите свой первый разработанный блок питания.

Пожалуйста, не указывайте только на питание 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА.

Для дополнительной информации, для вывода положительного напряжения используйте LM78XX. XX указывает значение выходного напряжения, а 78 указывает положительный выход. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

На этом конструирование регулируемого источника питания подошло к концу. Надеюсь, вам понравилось.

Спасибо и удачной жизни.


Другие полезные сообщения:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *