12В с блока питания компьютера: Где взять блок питания на 12 вольт

Содержание

Где взять блок питания на 12 вольт

Как «запитать» автомагнитолу от компьютерного блока питания?

Главная тема уже озвучена в заголовке, поэтому перейдём сразу к делу. Итак, что нам понадобится? Во-первых, рабочая автомагнитола или автомобильный CD/MP3-ресивер. У меня на руках оказался автомобильный CD/MP3-ресивер Panasonic CQ-DFX883N.

Во-вторых, компьютерный блок питания формата AT или ATX. Сейчас полно компьютерного железа от старых ПК, в том числе и блоков питания.

Где его можно найти бесплатно или за минимальные деньги?

Вытащить из своего старого ПК, который пылится в чулане;

Купить за копейки на «барахолке» – такие 100% есть на любом радиорынке;

Починить и довести до ума неисправный компьютерный БП.

Для своей затеи я купил «бэушный» блок питания как раз на «барахолке».

Прежде чем подключать компьютерный БП к автомагнитоле – нужно его проверить и, если надо, довести до рабочего состояния. Об этом чуть позже, а пока о том, как подключить автомагнитолу к компьютерному БП.

Подключение автомагнитолы к компьютерному БП.

У компьютерного блока питания (БП) есть здоровый жгут с выходными разъёмами. Провода чёрного цвета – это минус или общий провод. По жёлтым подаётся напряжение +12V. Остальные провода нам будут не нужны – их использовать не будем. Так вот нам нужно от блока питания взять всего-навсего 12V. Для этого берём любой из разъёмов MOLEX или Floppy-разъём. Далее откусываем от него жёлтый провод (+12V) и чёрный провод – минусовой. Затем подключаем эти провода к питающим проводам автомагнитолы.

Стоит отметить, что выходной канал на +12V достаточно мощный и может «отдать» в нагрузку ток в 8-10 ампер (при мощности БП 200 – 300 Вт.), что, собственно, нам и нужно. Обычно, максимальный ток, потребляемый автомобильным CD/MP3-ресивером составляет 10-15 ампер. Но это максимум!

Кроме этого нужно провести лёгкую доработку, если у вас блок питания формата ATX. Об этом расскажу чуть позднее.

У автомагнитолы имеется 3 провода, к которым подключается питание (напряжение +12V) от штатной электросети автомобиля. Чёрный провод – это минус (по другому – общий провод, «земля», Ground). Жёлтый провод – это +12V (маркируется как Battery ). Это основные провода для подключения питания к автомагнитоле.

Но даже если подключить эти провода к аккумулятору или БП, автомагнитолу мы не включим – она будет в дежурном («спящем») режиме.

Поэтому ищем красный провод (маркируется ACC ) у автомагнитолы и скручиваем его вместе с жёлтым проводом +12V. Штатно красный провод подключается к замку зажигания авто.

Как только водитель замыкает ключом зажигания электрическую цепь, автомагнитола автоматически переходит из спящего режима в рабочий – включается подсветка дисплея автомагнитолы. При этом красный провод через замок зажигания закорачивается на плюс +12V. Мы же это делаем, принудительно соединяя жёлтый (+12V) и красный провод.

При этом автомагнитола будет включатся сразу же при подаче напряжения.

Отличие компьютерных блоков питания формата AT от ATX.

Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.

У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.

Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.

Восстановление компьютерного блока питания.

Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно – исправить дефекты.

Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит – иначе можно получить лёгкий удар током.

Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.

Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.

Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.

Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).

Для проверки работы отдельных блоков бытовых приборов домашнему мастеру может понадобиться напряжение 12 вольт как постоянного, так и переменного тока. Подробно разберем оба случая, но вначале необходимо рассмотреть еще одну величину электроэнергии — мощность, которая характеризует способность устройства надежно совершить работу.

Если мощности источника будет недостаточно, то он не выполнит задачу. К примеру, блок питания компьютера и аккумулятор автомобиля выдают 12 вольт. Токи нагрузки у компьютера редко превышают значения 20 ампер, а стартерный ток аккумулятора автомобиля больше 200 А.

Автомобильный аккумулятор обладает большим резервом мощности для задач компьютера, а вот блок питания ПК при таком же напряжении 12 вольт абсолютно не пригоден для раскрутки стартера, он просто сгорит.

Способы получения постоянного напряжения

Из гальванических элементов (батареек)

Промышленность выпускает круглые батарейки различных габаритов (зависят от мощности) с напряжением 1,5 вольта. Если взять 8 штук, то из них при последовательном подключении как раз получится 12 вольт.

Соединять между собой выводы батареек надо поочередно «плюсом» предыдущей к «минусу» последующей. Напряжение 12 вольт будет между первым и последним выводами, а промежуточные значения, например, 3, 6 или 9 вольт можно замерить на двух, четырех, шести батарейках.

Емкости элементов не должны отличаться, иначе мощность схемы будет уменьшена ослабленной батарейкой. Для таких устройств желательно применять все элементы однотипной серии с общей датой изготовления. Ток нагрузки от всех 8 батареек, собранных последовательно, соответствует величине, указанной для одного элемента.

Если возникнет необходимость подключения такой батареи к нагрузке, в два раза превышающей номинальную величину источника, то потребуется создать еще одну подобную конструкцию и обе батареи подключить параллельно, соединив между собой их однополярные выводы: «+» к «+», а «-» к «-».

Из малогабаритных акккумуляторов

Никель-кадмиевые аккумуляторы выпускаются с напряжением 1,2 вольта. Чтобы получить от них 12 вольт понадобится 10 элементов соединять последовательно, как в рассмотренной перед этим схеме.

По такому же принципу собирают батарею из никель-металл-гидридных АКБ.

Аккумуляторная батарея используется для более длительной работы, чем из обычных гальванических элементов: АКБ можно подзаряжать и перезаряжать многократно при необходимости.

От блоков питания, работающих на переменном токе

Многие бытовые приборы имеют встроенную электронику, которая питается от выпрямленного напряжения, получаемого в результате преобразования 220 вольт. Блоки питания компьютера, ноутбука как раз выдают 12 вольт выпрямленного и стабилизированного напряжения.

Достаточно подключиться к соответствующим клеммам выходного разъема и запитать блок питания, чтобы получить от него 12 вольт.

Аналогичным образом можно воспользоваться блоками питания старых радиоприемников, магнитофонов и устаревших телевизоров.

Кроме того, можно самостоятельно собрать блок питания для постоянного тока, выбрав для него подходящую схему. Наиболее распространены трансформаторные устройства, преобразующие 220 вольт во вторичное напряжение, которое выпрямляется диодным мостом, сглаживается конденсатором и регулируется транзистором с помощью подстроечного резистора.

Схема простого зарядного устройства

Подобных схем можно найти много. В них удобно включать стабилизаторные устройства.

Способы получения переменного напряжения

Самым доступным методом считается применение понижающего трансформатора, который уже показан на предыдущей схеме. Промышленность уже давно выпускает такие устройства для различных целей.

Однако домашнему мастеру совсем не сложно сделать трансформатор для своих нужд из старых конструкций.

Для подключения трансформатора к сети 220 на первичную обмотку следует подавать питание через защиту, вполне можно обойтись проверенным предохранителем, хотя автоматический выключатель лучше подойдет для этих целей.

Вся схема вторичной нагрузки должна быть собрана заранее и проверена. Резерв мощности трансформатора около 30% позволит длительно его эксплуатировать без перегрева изоляции.

Технически возможно получить 12 вольт переменного тока от генератора, который приводится во вращение каким-либо двигателем или за счет преобразования постоянного тока инвертором. Однако эти способы более подходят для промышленных установок и отличаются сложной конструкцией. Поэтому в быту практически не используются.

В современном мире существует множество различных устройств, требующих подключения к электросети. Для некоторых из них требуется определенный блок питания. Напряжение и сила тока играют важную роль в функционировании любого электроприбора. В сегодняшней статье я хочу рассказать о том, как взять напряжение с блока питания компьютера и каким образом можно получить 12 Вольт.

Какое напряжение с блока питания компьютера можно получить

Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация.

Разбираемся с маркировкой

Взгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.

Учитывайте, что блок питания запускается замыканием проводов GND (минус) и PWR SW. Работает до тех пор, пока данные цепи замкнуты! То есть, разъемы будут работать только тогда, когда блок питания подаст напряжение.

Для чего может понадобиться напряжение с блока питания компьютера

Вы спросите, а зачем вообще это нужно? Расскажу на своем опыте. Мне в руки попался монитор, работающий от 12 Вольт, однако кабеля подключения к электросети у меня не было. Имеющиеся блочки от других устройств не подходили по силе тока или по напряжению. Монитор нужно было проверить в течение дня, а отправиться на поиски нужного зарядного, не было ни времени, ни желания. Взяв 12 Вольт с желтого провода на молексе БК питания компьютера, мне удалось включить монитор. Оказалось, что это вполне удобно. Не нужно искать лишнюю розетку, а сам экран запускается вместе с системным блоком. Спустя год у меня все так и работает.

Существует еще целый ряд возможностей, которые дает напряжение с блока питания компьютера.

  • Многие мастера из БП ПК делают блок питания для шуруповерта и других электроинструментов.
  • Существует возможность переделать блок питания ПК под автомобильное зарядное для аккумуляторов.
  • Вы всегда можете зарядить любое устройство, выбрав нужное напряжение. Согласитесь, ведь часто бывает так, что оригинальные блоки выходят из строя в самый неподходящий момент.
  • Можно запитать диодную ленту или любой другой осветительный прибор, требующий небольшое напряжение.

Как взять 12 вольт с блока питания компьютера

Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя. Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.

Если вы еще не знакомы со статьей моего коллеги «Варрам — робот для вашего питомца», то прочесть её можно нажав сюда.

Немного информации в помощь

Для того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог.

Положительное Ноль Итог
+12V 0V +12V
+5V -5V +10V
+12V +3,3V +8,7V
+3,3V -5V +8,3V
+12V +5V +7V
+5V 0V +5V
+3,3V 0V +3,3V
+5V +3,3V +1,7V
0V 0V 0V

А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!

Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.

Блок питания от компьютера как источник 12

Как «запитать» автомагнитолу от компьютерного блока питания?

Главная тема уже озвучена в заголовке, поэтому перейдём сразу к делу. Итак, что нам понадобится? Во-первых, рабочая автомагнитола или автомобильный CD/MP3-ресивер. У меня на руках оказался автомобильный CD/MP3-ресивер Panasonic CQ-DFX883N.

Во-вторых, компьютерный блок питания формата AT или ATX. Сейчас полно компьютерного железа от старых ПК, в том числе и блоков питания.

Где его можно найти бесплатно или за минимальные деньги?

Вытащить из своего старого ПК, который пылится в чулане;

Купить за копейки на «барахолке» – такие 100% есть на любом радиорынке;

Починить и довести до ума неисправный компьютерный БП.

Для своей затеи я купил «бэушный» блок питания как раз на «барахолке».

Прежде чем подключать компьютерный БП к автомагнитоле – нужно его проверить и, если надо, довести до рабочего состояния. Об этом чуть позже, а пока о том, как подключить автомагнитолу к компьютерному БП.

Подключение автомагнитолы к компьютерному БП.

У компьютерного блока питания (БП) есть здоровый жгут с выходными разъёмами. Провода чёрного цвета – это минус или общий провод. По жёлтым подаётся напряжение +12V. Остальные провода нам будут не нужны – их использовать не будем. Так вот нам нужно от блока питания взять всего-навсего 12V. Для этого берём любой из разъёмов MOLEX или Floppy-разъём. Далее откусываем от него жёлтый провод (+12V) и чёрный провод – минусовой. Затем подключаем эти провода к питающим проводам автомагнитолы.

Стоит отметить, что выходной канал на +12V достаточно мощный и может «отдать» в нагрузку ток в 8-10 ампер (при мощности БП 200 – 300 Вт. ), что, собственно, нам и нужно. Обычно, максимальный ток, потребляемый автомобильным CD/MP3-ресивером составляет 10-15 ампер. Но это максимум!

Кроме этого нужно провести лёгкую доработку, если у вас блок питания формата ATX. Об этом расскажу чуть позднее.

У автомагнитолы имеется 3 провода, к которым подключается питание (напряжение +12V) от штатной электросети автомобиля. Чёрный провод – это минус (по другому – общий провод, «земля», Ground). Жёлтый провод – это +12V (маркируется как Battery ). Это основные провода для подключения питания к автомагнитоле.

Но даже если подключить эти провода к аккумулятору или БП, автомагнитолу мы не включим – она будет в дежурном («спящем») режиме.

Поэтому ищем красный провод (маркируется ACC ) у автомагнитолы и скручиваем его вместе с жёлтым проводом +12V. Штатно красный провод подключается к замку зажигания авто.

Как только водитель замыкает ключом зажигания электрическую цепь, автомагнитола автоматически переходит из спящего режима в рабочий – включается подсветка дисплея автомагнитолы. При этом красный провод через замок зажигания закорачивается на плюс +12V. Мы же это делаем, принудительно соединяя жёлтый (+12V) и красный провод.

При этом автомагнитола будет включатся сразу же при подаче напряжения.

Отличие компьютерных блоков питания формата AT от ATX.

Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.

У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.

Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON) и чёрным проводом. При этом блок питания будет выходить из «спящего» режима сразу после подачи на него напряжения сети 220V.

Восстановление компьютерного блока питания.

Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или «бэушные») блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился – при этом начнёт крутить вентилятор – стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно – исправить дефекты.

Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит – иначе можно получить лёгкий удар током.

Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.

Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей. Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.

Более подробно об устройстве компьютерных блоков питания формата AT рассказано здесь.

Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).

Необходимость подать питание на адаптер для подключения жесткого внешнего диска через гнездо USB к персональному компьютеру заставила вспомнить о давно пылившемся на антресолях блоке питания JNC LC-200A. Напряжение 12 и 5 вольт в наличии есть, тока в достатке. Да что там говорить – профильный блок питания в подобных ситуациях всегда лучший вариант.

Свою функцию он выполнил успешно. Другой источник питания для этих целей решил не искать, вот только смущает обилие проводов выходящих из него наружу. И выход тут один, раз уж решил использовать его постоянно – необходима доработка.

Разобрал блок питания на отдельные узлы, покрасил корпус, просверлил в нижней части отверстия для клемм и установки на днище резиновых ножек (которые и поставил в первую очередь, а то пока соберешь, весь стол железом днища обдерешь).

Клеммы поставил на все виды имеющихся напряжений, пусть будут. Красные «+12», «+5», «+3,3» вольта, а чёрные «0», «-12», «-5». Тем более, что используя их различное сочетание, можно получить весьма широкий спектр постоянных выходных напряжений.

Взялся за плату. Провода, идущие на вентилятор, ранее были просто запаяны – установил разъём на случай необходимости разборки блока питания в дальнейшем.

Из выводных проводов нетронутыми оставил два жгута, остальные укоротил и объединил (в соответствии с цветом и конечно же выходным напряжением).

Плату на место, укороченные провода к клеммам, цельные жгуты вывел наружу.

Затем поставил на место разъём сетевого питания и выключатель, причём последний, раньше располагался вне корпуса на полуметровом кабеле, но в итоге был интегрирован в имевшуюся и не используемую верхнюю сетевую розетку. Вентилятор установил так, чтобы он гнал воздух внутрь корпуса. Вот тут посмотрите как стартовать БП без ПК.

Привернул верхнюю часть корпуса на место, на одном выводном жгуте оставил разъём питания для подключения жёстких дисков c интерфейсом IDE, на другой установил разъём для дисков с интерфейсом SATA. Клеммы питания подписал самым простым и доступным образом – распечатал необходимые обозначения, наклеил сверху текста скотч, вырезал и приклеил.

Обратная сторона собранного блока питания. Кнопка включения расположилась в удобной нише, случайное включение или выключение её практически невозможно. И это не мелочь, так как при несанкционированном отключении питания от подключённого к компьютеру жесткого внешнего диска возможны неблагоприятные последствия. Пользоваться доработанным блоком питания для подключения ЖВД несравненно удобней, сказал бы даже комфортно. Плюс к этому возможность использования блока питания и для получения других самых различных постоянных напряжений.

Получение разных напряжений – таблица соединений

Получаем Соединяем
24.0V 12V и -12V
17.0V 12V и -5V
15.3V 3.3V и -12V
10.0V 5V и -5V
8.7V 12V и 3.3V
8.3V 3.3V и -5V
7.0V 12V и 5V
1. 7V 5V и 3.3V

Также БП стал более компактным и мобильным, поэтому применений ему будет масса – необходимость в мощном и отдельном источнике различных напряжений возникает часто. Автор проекта – Babay iz Barnaula.

Обсудить статью ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНОГО БЛОКА ПИТАНИЯ БЕЗ ПК

Общее·количество·просмотров·страницы

среда, 25 ноября 2015 г.

Мощный источник напряжения 12 вольт из компьютерного блока питания.

Из кучки, привезённой мне этого барахла, живым оказался самый древний блок питания (model: FA-5-2).
2002 год. Особенно радует надпись pentium 4 . (какое отношение к пентиуму имеет блок питания? загадка!)
Пишу кстати, под – приятный FRUUPP

Что имеем с БП?
Имеем напряжение 12 вольт аж до 13и ампер постоянного тока. Такой ток мне не нужен, в разы меньше пока. А так можно будет запитать автомобильный компрессор или шуруповёрт у которого сломались аккумуляторы, или подзарядить замёрзший автомобильный аккумулятор (для нормальной зарядки нужно всё таки 14 вольт) да и мало ли чего ещё.
Остальные напряжения меня пока не интересуют.

А это перемычка. Которая запустила блок питания. Просто замкнул серый провод на чёрный (общий, или минус). Хотя вроде как народ через сопротивление этот провод кидает.

Тут (резкость ты где?) видим что имеем огромный пук проводов цветоразных от которых избавимся.

Здесь я уже избавился от этой косы провода разного цвета.
Серый провод напрямую впаял на «корпус» (т.е. припаял вместо одного удалённого чёрного).
Припаял и посадил на клей лампу. Лампа 12 вольт 20 ватт запитана 5ю вольтами. Хотя на выходе 5и вольт стоит мощное сопротивление (номинал даже не стал смотреть), которое видимо не даёт блоку питания работать на холостом ходу создавая некую нагрузку. (АХТУНГ! импульсные блоки питания нельзя включать без нагрузки если нет соответствующей защиты. А есть ли такая защита в этом БП неизвестно. Ну поэтому лампочка не будет лишней. )

Оставил один шлейфик на выходе. В нём 12 вольт и 5 вольт. Сечение провода конечно явно не под 13 ампер, но такой ток мне пока не нужен.

Вот так он работает. Светит и карлсон шуршит. По крайней мере можно использовать как ночник :-))
Да, можно будет установить в это зияющее отверстие гнездо прикуривателя автомобиля. Предварительно поработав напильником.

Вторая жизнь компьютерного блока питания ATX

Со скуки решил сделать старый «фокус» из вышедшего на покой  компьютерного блока питания ATX 450W, сделать автономный блок питания (БП), например для радиостанции. Блок питания запускался, 12 В. выдавал, значит с ним все не так страшно. Осталось убрать лишнее, добавить необходимое и продлить ему жизнь.

Хотел по подробней заснять весь процесс, но был один, делать и фоткать не получалось.

Характеристики БП вполне приличные, что бы за питать достаточного мощного 12 вольтового потребителя, например радиостанцию.

Вскрываем блок питания и смотрим какие у него проблемы и что там у нас лишнее.

После очистки выяснилось, что высохла емкость на выход 5В., это напряжение нам вообще не нужно, его проще удалить.

Убираем заодно и все провода, со всем разъемами, так  много их теперь не нужно.

Черные провода это у нас МИНУС, Желтые + 12 В.. Ну а остальное не важно, пожалуй кроме Зеленого провода, он нам пригодится. Выпаиваем всё лишние, тут кстати очень пригодится паяльник на 150 Ватт. 🙂

Зеленый провод запускает БП из режима «Standby», его в последствии надо замкнуть на минус, туда к черным проводам. Иначе блок питания не запустится.

Ну вот плата от лишнего расчищена, Зеленый провод на месте,  из толстых проводов готовим хвостики под клемники, для плюса и минуса.

Проводов нужного сечения в жгуте блока питания не было, хорошо подошли провода для  аккумулятора из сгоревшего UPS.

Вот нашел клемники и заодно готовлю светодиод индикации работы БП, это всегда пригодится.

Распаиваем выходные провода и светодиод, делаем предварительный запуск, мало ли что могло случится пока ковырялся на плате.

Осталось разметить отверстия, все просверлить и собрать, навести красоту.

Свободные места в корпусе нашлись, сверло на 8 мм. и все практически готово.

Собираем протягивает, заливаем термоклеем, то что может отвинтится, укладываем провода, впереди поверка и  небольшие испытания.

Холостой ход в норме, все стабильно, напряжение 12,3 В.. Можно конечно покопаться и добавить регулировку напряжения в небольшом диапазоне до 14 В.. Но все и так  в пределах допустимого, а время уже к концу рабочего дня.

Подключена Моторола GM 340, стоит на передаче, ток 5 А. Для экономного варианта, из БУ, совсем без денег , получился не плохой блок питания. Который еще послужит на пользу человечеству, а не будет просто валяться или разобран за запчасти.

С таким же успехом, можно сделать выводы на напряжения 5В. и 3,3В.

Всё о компьютерном блоке питания

Компьютерный блок питания — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока путём преобразования сетевого напряжения до требуемых значений.

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3…5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3. 3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Ранее ЭлектроВести писали, что глава Tesla подтвердил, что после внедрения полного автопилота Tesla больше не будет считаться автомобилем. Это будет прибыльный бизнес роботакси, так что стоить электрокары будут в несколько раз дороже «обычных» машин. Вероятно, индивидуальным покупателям их и вовсе продавать не будут.

По материалам: electrik.info.

ATX12VO — питаемся по-новому / Блог компании Intel / Хабр

Даже в постоянно изменяющемся компьютерном мире есть островки спокойствия, куда редко ступает нога улучшателей. Эти компоненты ПК живут по многократно апробированному на практике принципу «работает — не трогай». Один из примеров такого взаимовыгодного долгожительства — форм-фактор АТХ и его компоненты. Однако даже самые удачные решения иногда подвергаются ревизии. В 2020 году Intel предлагает новый вариант блока питания для настольных ПК — ATX12VO.


Всем хорошо известный стандарт АТХ был разработан Intel в 1995 году; он регламентировал как механические параметры компьютерной системы, так и схему ее электропитания: набор напряжений, подаваемых с БП на материнскую плату и другие компоненты, геометрию и распиновку разъемов питания, а также принципы управления электрической цепью. Согласно текущему стандарту, блок питания поставляет на материнскую плату постоянные напряжения 3.3 В, ±5 В и ±12 В при помощи основного 24-пинового разъема. Питание на прочие устройства и компоненты компьютера также по большей части распределяется от БП.

Стандарт ATX12VO существенно изменяет электрическую схему компьютера. 12VO означает «12 V Only», сам блок питания при этом называется «Single Rail PSU», то есть «БП с одним выходным напряжением». Сущность идеи теперь наверняка понятна: на материнскую плату подается одно-единственное напряжение +12 В с использованием укороченного 10-пинового разъема. Дальнейшим преобразованием напряжения и раздачей питания низковольтным потребителям занимается сама плата. Разъемы питания распаиваются в удобных для этого местах, скажем, для накопителей — рядом с разъемами для data-кабелей.

Сила тока рассчитывается исходя из практического норматива в 6-8 А на пин. В том случае, если подаваемой на плату мощности не хватает для нормальной работы ПК (установлен мощный процессор либо иной потребитель, применяется разгон), блок питания может предоставить дополнительные 12 В линии питания, при этом применяется модульный принцип: провода подключаются к разъемам на задней стенке БП.

Новый стандарт электропитания имеет два основных преимущества:

  1. Существенно уменьшается количество электрических проводов и разъемов в корпусе компьютера. Больше нет необходимости использовать стяжки для организации гирлянд неиспользуемых колодок — внутри находятся только нужные силовые элементы. Дополнительно, маленький основной разъем экономит место на материнской плате.
  2. Питание через материнскую плату позволяет реализовать более тонкие режимы энергопотребления и энергосбережения, в частности, Alternative Sleep Mode (ASM). Десктоп, так же как и ноутбук, в XXI веке должен быть энергоэффективным.

Блоки питания нового стандарта появятся уже в этом году, первоначально в готовых моделях ОЕМ-производителей. Далее появится поддержка ATX12VO и на уровне продаваемых отдельно материнских плат. Подробный технический документ, описывающий новый стандарт, доступен на сайте Intel.

Диагностика, ремонт и доработка компьютерного блока питания АТХ — Starus Recovery

В этой статье мы рассмотрим устройство простого блока питания АТХ для ПК. Расскажем какие компоненты обычно отсутствуют в дешевом китайском блоке, на которых сэкономил производитель. Рассмотрим вопрос надежности и частую причину повреждения таких блоков питания. А также расскажем как правильно диагностировать неисправность, замерять напряжение под нагрузкой и без.


Содержание статьи:


 

Для примера возьмем блок питания Oktet модель ATX-400W

  • Мощность — 400 Вт
  • Форм-фактор — ATX
  • КПД — 70%
  • Охлаждение — кулер 80 мм
  • PFC модуль — активный
  • Стабилизация напряжения — нет
  • Защита от перегрузки — нет
  • Защита от короткого замыкания — есть

Основная причина повреждения и правильный расчет мощности БП АТХ

Наш блок питания из за неправильного расчета мощности пережил короткое замыкание в нагрузке. Изоляция проводов для подключения внешней нагрузки сильно оплавилась, некоторые провода сгорели полностью.

А почему это случилось?

Причина следующая: заявленная мощность блока 400вт, но это не совсем так — это общая мощность, а на самом деле, в таком дешевом Блоке питания, в лучшем случае будет ватт 250.

Основная потребляемая мощность в современной сборке приходится на линию 12в. От этой линии в компьютере питается практически все! И если рассмотреть линию 12в/15А данного блока и пересчитать ее в ваты то получаем честные 180 вт (12в*15А = 180 ватт)

Вывод:

Надо внимательно изучать информационную наклейку на БП и понимать какую мощность отдает устройство именно по линии 12в.

Ниже пример правильного блока питания на 400вт с правильным указанием мощности. Здесь сразу понятно какую реальную мощность вы можете получить по линии 12 вольт — это честные 275 ватт.

Наш БП все же выдает все напряжения (12, 5, 3.3 вольта) и можно уверенно сказать, что такие блоки довольно живучие, но далеко не надежные! Поскольку такое устройство не имеет Стабилизации напряжения и Защиты от перегрузки. А так же зачастую в таких блоках присутствуют не все компоненты на платах. И такое устройство может легко уничтожить вашу материнскую плату или процессор.

Как проверить выдаваемые блоком напряжения

Чтобы проверить выдаваемые блоком напряжения можно воспользоваться готовыми изделиями с китай-рынка — например цифровым тестером для блоков питания АТХ.

Также снять показания можно обычным вольтметром. Но сначала вам потребуется запустить блок, а для этого необходимо найти контакт дежурного напряжения — так называемый Standby контакт. Находится он на главном разъеме для подключения материнской платы, цвет подводящего провода зеленый.

Чтобы запустить — нужно замкнуть этот контакт с черным проводом (массой). Сделать это можно обычной скрепкой или пинцетом. Напряжения на разъемах для питания внешних устройств появятся только после запуска блока, об этом вы поймете по вращению кулера охлаждения.

После запуска, снимаем показания напряжения по всем линиям питания.
Если все напряжения соответствуют, можно подключить эквивалент нагрузки. В роли нагрузки можно использовать лампу 12в мощностью приблизительно 100 вт.

Но правильнее будет сначала разобрать блок питания и визуально оценить состояние компонентов, а потом подключить эквивалент нагрузки. Надо убедиться что на плате нет подгоревших дросселей, а высоковольтные конденсаторы не по вздувались.

Откручиваем 4 винтика, снимаем верхнюю крышку, аккуратно извлекаем плату и осматриваем. В нашем блоке визуально поврежденных компонентов не видно, конденсаторы целые, плата чистая.

Устройство простых блоков питания АТХ

Данный Блок питания выполнен по стандартной схемотехнике для блоков ATX. Входное напряжение 220в поступает через сетевой разъем на плату, на которой отсутствует сетевой фильтр входного напряжения. Но место под распайку имеется — скорее всего это результат экономии наших китайских друзей.

Далее напряжение поступает на выпрямительный мост, рядом два накопительных конденсатора емкостью по 470 микрофарад — это минимальная емкость для данной мощности.

На первом радиаторе установлены два силовых ключа и транзистор мульти генератора дежурного напряжения. За ним развязывающий трансформатор и трансформатор дежурного напряжения.

На следующем радиаторе — это уже низковольтная часть БП, стоят диоды шотки, следом расположены дроссель групповой стабилизации +5 +12в и дроссель канала 3,3 вольта. На выходе жгуты линий напряжений для подключения внешних устройств и линия питания кулера.

Устранение неисправностей и доработка блока питания

Проверяем диоды выпрямительного моста на пробой — в нашем случае диоды оказались рабочими. Теперь надо заменить перегоревшие провода для питания внешних устройств. Жгут линий питания материнской платы не поврежден.

И так, мы заменили провода и немного доработали наш БП.

На выходе установили дополнительно конденсаторы по 1500 мкф 3шт, так как штатные по 1000мкф — маловато для этой мощности. А так же добавили дроссель и фильтрующие конденсаторы для входного напряжения сети 220в.
Емкости высоковольтной части также пришлось заменить правильными по 560 мкф, поскольку измерение впаяных на плате — показало емкость всего 2 по 250 китайских мкф, вместо положенных 2 по 470 настоящих 🙂

Контрольное включение устройства после выполненных работ

Подаем входное напряжение 220в, проверяем наличие дежурного напряжения на разъеме под материнку, замыкаем этот контакт на массу и запускаем блок. Блок питания стартует, кулер вращается.

Проверяем напряжения по каждой линии питания 5/12/3,3 вольта

  • линия +5в — 5в ровно
  • линия +12в — 11,97
  • линия 3,3в -3,38в

Как правильно подключить лампу накаливания для тестирования под нагрузкой

Хотим обратить ваше внимание на некоторый нюанс подключения мощной лампы накаливания в качестве нагрузки.

Лампа накаливания нелинейный элемент, сопротивление ее меняется по мере разогрева нити накала. В холодном состоянии сопротивление очень низкое — 0,3 ом к примеру. Поэтому при подключении к цепи 12в в качестве нагрузки срабатывает защита по превышению тока.

А вот если предварительно разогреть нить накала пониженным напряжением, к примеру возьмем 5в, а после подключить на линию 12в — блок питания не уйдет в защиту. Потому что спираль уже нагрелась и сопротивление ее изменилось — увеличилось.

Давайте попробуем измерить сопротивление нити накала сразу после отключения — как видите — четыре с лишним ома! И далее при остывании лампы сопротивление опять снижается и при комнатной температуре оно опять будет порядка 0,2 ома.

При сопротивлении 0,2 Ома холодной лампы, импульс тока будет порядка 60А (закон Ома — I=V/Om), что превышает допустимый ток нагрузки для цепи 12в импульсного блока питания ATX. С разогретой лампой ток в цепи 12в будет всего порядка 2-5А.

И так пробуем подключить дополнительную нагрузку в виде лампы, БП не должен уходить в защиту. Сначала подключаем лампу на линию 5в — лампа должна загореться не очень ярко. Далее переключаем на 12в — свечение лампы становится более яркое.

Теперь надо снять показания напряжений на линиях в нагрузке.

  • линия 12в -просело до 11,72
  • линия 5в -4,98
  • линия 3в -3,31

Все показания в пределах допустимого.

Если устройство работает стабильно, можно собирать.

На жгут проводов не забываем одеть защитную клипсу, дабы избежать пробоя на корпус, в следствии повреждения изоляции проводов.

После блок питания надо окончательно протестировать, погоняв его некоторое время под нагрузкой по линии 12в. И теперь его можно использовать в какой нибудь нетребовательной сборке ПК!

 

На этом все, удачных ремонтов вам, живучей и надежной техники.

 


Похожие статьи про восстановление данных:

Дата:

Теги: Как исправить, Компьютер, Поврежденный, Ремонт

Переделка компьютерного блока питания для шуруповёрта

Не нужно отчаиваться, если аккумулятор или зарядное устройство вашего шуруповерта вышли из строя, в то время как вам необходимо закончить срочную работу. Если у вас есть ненужный компьютерный блок питания, то после несложной доработки его можно использовать для подключения этого инструмента к сети электрического тока.

Переделка блока питания с компьютера своими руками

При работе со средней нагрузкой потребляемый ток значительно меньше пускового. Усредненный ток пуска различных шуруповертов с рабочим напряжением 12В приблизительно равен 18А. Предположим, что максимальный ток не превысит 20А. Тогда, так как P=U×I, вас устроит блок питания мощностью от 240Вт с выходным током не менее 20А. Теперь, когда вы знаете, какой преобразователь подойдет для питания вашего «Шурика», остается только немного доработать его.

  • Пометьте выход +12В и «землю». Определить их можно даже без тестера. Общий провод имеет изоляцию черного цвета. Питание +12В – желтого.
  • Отпаяйте от платы БП выходные жгуты и удалите их вместе с разъемами. Оставьте только два провода – черный и зеленый.
  • Замкните оставленные провода между собой и заизолируйте соединение. Это нужно для имитации сигнала запуска БП с материнской платы.
  • К выходу +12В и к «земле» припаяйте 2 отрезка многожильного медного провода.
  • Выведите их из корпуса через отверстие для жгутов.
  • Сетевой кабель подключите к штатному гнезду блока питания.

Важно! Шуруповерт имеет низкое напряжение питания, поэтому необходимая мощность достигается за счет большого тока. Но потери в кабеле прямо пропорциональны величине электротока и сопротивлению проводов. Значит, чтобы мощность инструмента снижалась не очень заметно, выбирайте провода для его соединения с блоком питания как можно большого сечения. И не делайте их слишком длинными. Сечение лучше взять не меньше 3 мм2. А длина не должна превышать 1,5 м.

Подключение

Устанавливать параллельно моторчику конденсатор емкостью несколько десятков тысяч микрофарад, как советуют некоторые мастера, не следует. Во-первых, при пусковом токе около 20 А от него будет мало прока. Во-вторых, он затруднит запуск блока питания. Если же при постепенном нажатии на пусковую кнопку патрон разгоняется и вращается нормально, а после резкого старта шуруповерта происходит остановка двигателя, значит, срабатывает защита БП по току. Удалять из устройства ее не следует, нужно только повысить порог отключения. Как это сделать на практике, зависит от конструкции вашего БП. Теоретически нужно ослабить на ее входе сигнал, пропорциональный выходному току.

Чтобы не разбирать шуруповерт и не паять провода к клеммам мотора, для подключения БП можно использовать негодную батарею.

  1. Разберите корпус неисправной батареи. Для этого при помощи крестовой отвертки или звездочки выверните саморезы из днища и снимите его;
  2. Удалите из корпуса аккумуляторы;
  3. В днище сделайте отверстие для проводов;
  4. Вставьте в него провода;
  5. Зачистите их концы, облудите и, соблюдая полярность, припаяйте к контактам на торце корпуса;
  6. Провода в отверстии зафиксируйте при помощи клеящего пистолета. А если у вас его нет, то намотайте на них несколько витков изоленты со стороны корпуса и вытяните провода так, чтобы днище делило намотку пополам;
  7. Соберите корпус, поставив днище на место, и вверните на место саморезы;
  8. Установка доработанного корпуса в рукоять шуруповерта закончена. Теперь вставьте вилку сетевого шнура в розетку 220В. Включите клавишу выключателя БП и, нажав на пусковую кнопку «Шурика», проверьте, все ли вы правильно сделали.

Целесообразность

Конечно, работать инструментом с коротким проводом далеко не так удобно как с аккумуляторным. Но переделка не займет у человека, владеющего навыками электромонтажа, много времени. Зато позволит закончить срочную работу. А затем не спеша решать, что делать с шуруповертом – ремонтировать его или выбрасывать и покупать новый. Постоянно работать таким инструментом вряд ли захочется, гораздо удобнее будет дешевая китайская электродрель с сетевым удлинителем. К тому же, при длительной работе блок питания заметно нагревается. Для того чтобы он остыл, нужно периодически делать перерывы в работе, что сказывается на результате.

Преобразование блока питания ПК

Преобразование блока питания ПК

Настольный блок питания от ПК

Обновлено 13 марта 2009 г.
(см. Описание и отказ от ответственности внизу страницы)

Есть ли у вас интерес в преобразовании одного из них:

в один из этих:

Готовый блок питания ATX мощностью 145 Вт с переключателем, крепежными штырями, этикетками и ножками. Обратите внимание на стяжки в вентиляционных прорезях
.
которые удерживают нагрузочный резистор.

Если вам нравится сборка собственного настольного источника питания из переработанного блока питания и нескольких деталей из местного магазина электроники, тогда возьмите
некоторые инструменты, налейте себе чашку кофе (или по личным предпочтениям) и приступим. Светодиод (светоизлучающий диод) также был спасен от
старый ПК. Если вы хотите добавить индикатор питания, светодиоды добавят приятного прикосновения и могут быть легко подключены к шине + 5 В. Я настоятельно призываю вас
чтобы прочитать содержимое этого сайта и связанные ссылки перед началом конверсии — на связанных страницах есть несколько подсказок.

Эта плата ATX PS имеет выводы для +5 (КРАСНЫЙ), -5 (БЕЛЫЙ), +12 (ЖЕЛТЫЙ), -12 (СИНИЙ) вольт, заземление (ЧЕРНЫЙ) и переключатель (ЗЕЛЕНЫЙ).
Имейте в виду, что некоторые блоки питания DELL, произведенные между 1996 и 2000 годами, не соответствуют стандартным отраслевым стандартам распиновки и цветовой кодировки. У вентилятора есть
также был отключен для лучшего просмотра. Поскольку этот PS был переоборудован для использования в лабораториях логики и робототехники, выбранные напряжения
прослушивались. Другие пользователи могут захотеть комбинации +3.3 В (ОРАНЖЕВЫЙ), +5 В и / или +12 В, если они преобразуют один из новых источников питания.
Для R / C-приложений выход 5 В также может служить настольным источником для управления приемниками и сервоприводами. Если используется в качестве источника питания для микро
и субмикросервоприводов, вы должны быть осторожны, чтобы не направить сервопривод в любую из конечных точек, чтобы не повредить меньшие шестерни в этих устройствах. Самый стандартный
сервоприводы имеют достаточно прочные зубчатые передачи и просто остановятся, если их толкнуть до механических упоров.

Измеренные напряжения на этом конкретном PS (шлюз P5-100 MHz 1996 года) были около 5.15 и 11,75 вольт. Остальные лиды имеют
был отрезан на печатной плате.

Вид на верхнюю часть корпуса с вентилятором, крепежными стойками и переключателем. Переключатель (SPST) и зажимные стойки доступны на Радио.
Хижина или другие поставщики электроники.

Блоки питания

в современных компьютерах известны как блоки питания SWITCHMODE или Switching Mode и требуют нагрузки для
продолжают работать после включения (термин режим переключения фактически применяется к технике преобразования переменного тока в цифровой
а не к действию включения). Эта нагрузка обеспечивается резистором с проволочной обмоткой 10 Вт и сопротивлением 10 Ом (песочная полоса — около 0,80 доллара США при
Radio Shack) через источник +5 В. Хотя многие из новых источников питания будут Latch_On без предварительной нагрузки, вы обнаружите, что
добавление резистора (1) немного увеличит измеренное напряжение на шине 12 В и (2) поможет стабилизировать уровень напряжения на этой шине
за счет минимизации падения напряжения, когда источник питания заряжен зарядным устройством.
Некоторые недорогие блоки питания могут выйти из строя, если их включить без нагрузки, хотя Руководство по проектированию
заявляет, что расходные материалы не должны быть повреждены при работе без достаточной нагрузки.Резистор песчаной косы был прикреплен к корпусу с помощью молнии.
на плоскую сторону резистора нанесено небольшое количество радиатора. Я также возьму файл и удалю все штамповочные флешки, которые
могут остаться около вентиляционных отверстий. Без охлаждения резистор сильно нагреется и может преждевременно выйти из строя; при таком расположении
резистор останется едва теплым на ощупь.

Имейте в виду, что многие жары
Смазки для раковин могут быть довольно токсичными, и любые излишки следует удалить и утилизировать должным образом.Также обязательно тщательно вымойте руки
и инструменты после использования. Хотя большинство радиаторов рассчитаны на температуру от 160 до 170 C, некоторые со временем могут высохнуть, и их эффективность снизится.
уменьшить — рекомендуется периодически проверять хороший контакт между корпусом и резистором.

Дополнительные комментарии

Отказ от ответственности: представленная информация не должна рассматриваться как статья «HOWTO», а просто документация моего преобразования
обработать.Современные блоки питания для ПК могут генерировать высокие уровни выходного тока, что может вызвать внутренний перегрев в PS или повреждение.
к подключенным к ним устройствам. Любому человеку, пытающемуся выполнить собственное преобразование, рекомендуется внимательно изучить свои спецификации PS.
и помнить о связанных напряжениях и мощности.

ЗАПРЕЩАЕТСЯ работать с открытым блоком питания, когда он включен !!!!

PS на картинке — это ATX мощностью 145 Вт, восстановленный из шлюза P5-100 MHz 1996 года выпуска — я сохранил все полезные детали от более старого
ПК перед тем, как их сбросить.Этот настроен для логической лаборатории, поэтому отводы +5, -5, +12, -12 вольт. Мы также используем +5 для
управлять сервоприводами в лаборатории робототехники. Этот источник питания не имеет источника 3,3 В, но более новые источники питания имеют. INTEL продолжил
изменить спецификации ATX, чтобы включить дополнительные разъемы питания для поддержки повышенных требований к питанию
более новые материнские платы. Прежде чем пытаться внести какие-либо модификации в , вы должны быть уверены в том, с каким типом источника питания вы работаете.
с и выходными токами, возникающими на каждом уровне напряжения.Источники более высокой мощности могут генерировать довольно высокие уровни
тока и может перегреть или повредить подключенные к ним устройства. См. Таблицу
Типичные текущие уровни для других мощностей
запасы.

Электропроводка от стандартной монтажной платы будет:

ОРАНЖЕВЫЙ +3,3 В
ЖЕЛТЫЙ +12 В
СИНИЙ -12 В
КРАСНЫЙ +5 В

БЕЛЫЙ -5 В (может отсутствовать на недавно произведенных расходных материалах)
ЧЕРНЫЙ ЗЕМЛЯ
ЗЕЛЕНЫЙ POWER-ON (Активный высокий уровень — необходимо замкнуть на массу для принудительного включения)
СЕРЫЙ МОЩНОСТЬ-ОК Что это ??
ФИОЛЕТОВЫЙ +5 В в режиме ожидания
КОРИЧНЕВЫЙ +3. Обновление руководства по проектированию REMOTE SENSING 3 В

*** Обратите внимание, что Dell 1996-2000 годов не полностью следовала этой цветовой кодировке — проверьте уровень напряжения с помощью измерителя перед подключением ***

Желтый, красный и черный провода, скорее всего, будут сгруппированы вместе зажимом. Некоторые PS будут иметь съемную вилку для
вентилятор, а у некоторых вентилятор будет постоянно прикреплен к печатной плате. Если вентилятор прикреплен, я обычно зажимаю провода, а затем
перепаять и накрыть термоусадочной трубкой — это дает больше рабочего пространства при модификации PS и позволяет мне смазать вентилятор.

Если вы собираетесь использовать только + 12 В и + 5 В, вы можете закрепить остальные провода на уровне печатной платы или оставить неиспользуемые провода длиной около дюйма, соберите
вместе взятых общих цветов, наденьте кусок термоусадочной трубки на жгут и усадите — это простой способ загнать и изолировать свободные концы.

Для блока питания +5 / +12 В вам потребуются следующие комбинации:

ЗЕЛЕНЫЙ / ЧЕРНЫЙ Переключатель питания (используйте переключатель SPST; переключатель мгновенного действия не будет работать)
КРАСНЫЙ / ЧЕРНЫЙ Резистор предварительной нагрузки (рекомендуемые значения и возможные замены см. В тексте)
ЖЕЛТЫЙ / ЧЕРНЫЙ Источник +12 В
КРАСНЫЙ / ЧЕРНЫЙ Источник +5 В
ОРАНЖЕВЫЙ / КОРИЧНЕВЫЙ См. Руководство по дизайну Обновление

Я использую один общий пост (GND — черный) для всех источников напряжения.Наши грузы легкие и отдельного основания для
каждый.

Оставьте 3 черных провода — переключатель, нагрузочный резистор и общий вывод (GND)

Оставьте 2 красных провода — зажим 5 В и нагрузочный резистор

Оставьте 1 желтый провод — зажим 12 В

Оставьте зеленый провод — выключатель питания

При наличии сенсорных проводов см. Обновление руководства по проектированию

. Если вы ожидаете, что ваш источник питания будет требователен по высокому току, может быть целесообразно провести два провода к каждой клемме привязки — пока
Очень маловероятно, что провод 18 AWG будет перегреваться, были случаи расплавления проводов и разъемов
на материнские платы повышенного спроса.

Обрежьте все остальное, даже если доску или связку вместе, как указано выше. Обычно я разрезаю жгуты электропитания, чтобы держать их как можно дольше.
Оставшиеся в блоке питания провода следует оставить длинными и при необходимости обрезать их. Если вы оставите их слишком долго, они
мешайте при упаковке, особенно если вентилятор внутренний, а не внешний. Убедитесь, что они держатся подальше от
путь лопастей вентилятора.

Подключите переключатель питания между зеленой шиной (PS_ON) и любой землей постоянного тока (черный).Переключатель (однополюсный, одноходовой) и
обязательные сообщения можно найти в местных магазинах электроники или в Интернете. Если в вашем источнике питания есть главный выключатель, обычно
расположен рядом с вилкой переменного тока, вы можете просто припаять зеленый PS_ON непосредственно к заземлению постоянного тока и использовать главный выключатель для включения.
Это работает так же хорошо и сэкономит вам деньги на коммутатор и время, необходимое для его установки.

Установите резистор предварительной нагрузки 10 Ом 10 Вт между землей постоянного тока и шиной + 5 В (красный).Не забудьте поставить на этот резистор радиатор.

Прикрепите другие шины, заземление постоянного тока, + 12 В и + 5 В, если они используются, к соответствующим клеммам. Эти стойки нельзя заземлять
к корпусу источника питания, поэтому обязательно проверьте целостность цепи между корпусом и стойкой, прежде чем пытаться включить источник питания.

Если вы хотите добавить световой индикатор включения, самое время это сделать. Светодиоды довольно недорогие, имеют невероятно долгий срок службы.
при работе на токе 20 мА или меньше, по существу, не нагревается и может быть подключен к шине + 5В. Однако светодиоды являются устройствами, управляемыми током, и для них потребуется сбросить
резистор, чтобы он не перегорел сразу. Углеродный пленочный резистор на 1/4 Вт номиналом от 180 до 220 Ом, подключенный между
проводов и БП будут работать нормально. Светодиоды, будучи диодами, также поляризованы и должны подключаться к положительному проводу (аноду).
подключен к шине + 5В, а отрицательный вывод (катод) подключен к земле постоянного тока. Светодиоды имеют плоскую форму на одной стороне основания — это плоское
будет с той же стороны, что и катод.Если ваш светодиод новый и у него не были укорачены провода, самая длинная ножка будет
положительный вывод или анод, но расположение плоского провода — самый безопасный способ определения полярности. Хотя коммерческие монтажные зажимы
Имеется также резиновая втулка с внутренним диаметром 3/16 дюйма. Просверлите корпус, чтобы принять втулку, вставьте ее на место и нажмите
светодиод, пока основание не упрется в втулку. Он будет выступать примерно на 1/8 дюйма для хорошей видимости. Я предпочитаю диффузные линзы.
чтобы очистить, поскольку они лучше видны при взгляде сбоку, но любой стиль линз добавит немного шика, сделанного своими руками.

При повторной сборке корпуса обязательно снова подсоедините вентилятор — некоторые расходные материалы не будут работать без установленного вентилятора — в любом
событие, вам нужно охлаждение. Этот PS на фотографиях имеет вентилятор, установленный на резиновых амортизаторах, и работает очень тихо. я буду
также разобрать вентилятор и смазать подшипники, пока я открываю PS. Поскольку они утилизированы, вентиляторы использовались для
некоторое время и обычно подшипники остаются сухими — я использую высококачественное масло для швейных машин от SINGER.Подойдет любое легкое масло, просто
не используйте WD40 —

Кроме того, вы можете получить 7 вольт с выходов +5 В и +12 В — +5 В считается отрицательным (GND), а +12 — отрицательным.
положительный — некоторые гики будут использовать эту комбинацию для запуска своих вентиляторов на более низкой скорости, чтобы уменьшить шум.

Я выполнил все инструкции, но выходное напряжение на стороне +12 В все еще низкое — что мне делать? Многие из R / C
люди переделывают блоки питания для использования в полевых зарядных устройствах и обнаруживают, что уровни напряжения ниже 12 В
иногда недостаточно для питания зарядных устройств.Прочтите эти СОВЕТЫ для некоторых
варианты, которые могут помочь увеличить этот уровень напряжения, дать небольшую теорию, определить распиновку разъема, которая есть в большинстве расходных материалов для ПК и
дать несколько советов по устранению неполадок.

Можно ли как-нибудь увеличить мощность преобразованного блока питания?
Обновлено: 13 марта 2009 г.

Усовершенствования в аккумуляторной технологии, бесщеточные двигатели и более надежные регуляторы скорости позволили «электрике» превратиться в модель.
размеры, которые когда-то были уделом только нитро- и газовых двигателей.Очевидно, что по мере того, как двигатели становились более мощными, батареи, необходимые для
Мощность привода этих двигателей также увеличилась, измеряемая силой тока, которую они могут подавать в систему полета. Осознать разумное
время зарядки, современные зарядные устройства должны обеспечивать больший ток для этих аккумуляторов, чем когда-либо прежде. В сфере электроники
как и во всех других закрытых системах, здесь нет бесплатного обеда. Следовательно, зарядные устройства также нуждаются в источнике питания большей силы тока, чем требовалось ранее.Преобразованные блоки питания ПК могут быть ограничены этими требованиями к большему току. Что можно сделать с
выжать больше усилителей из одного из этих блоков питания?

Возможно, эту проблему можно решить, но ваш блок питания должен быть одной из более новых моделей ATX12V, чтобы вы могли применить
модификация. Посетите на этой странице , чтобы узнать, доступно ли решение для вашего преобразования.

Заменитель резистора

Жизнеспособная альтернатива использованию силового резистора — заменить его автомобильную сигнальную лампу 1157.Это лампа с двойной нитью
и его нагрузки с питанием обеих нитей обычно достаточно для поддержания Latch_On и повышения напряжения на шине 12 В до
подходящий уровень для большинства нужд. Ваш вариант — припаять линию 5 В (красная) к обоим положительным контактам лампы и заземлить основание.
к заземлению постоянного тока или подобрать гнездо с поворотным замком при покупке лампы. Преимуществом использования розетки является простота замены.
лампа вышла из строя. Если вы не чувствуете себя комфортно со своими навыками пайки, вам также будет немного проще работать с проводкой на розетке.
а не булавки на лампе.Просто помните, что корпус розетки — это земля, и два провода в основании должны быть прикреплены
на рейку 5в. Что еще более важно, вы должны быть очень осторожны, чтобы ни цоколь лампы, ни корпус патрона не касались каких-либо внутренних компонентов.
в блоке питания. Эти лампы можно купить в любом автомобильном магазине и в большинстве Walmarts.

Я предпочитаю использовать резисторы, так как конечный преобразованный продукт полностью автономен, и у меня больше контроля над приложенной нагрузкой, но
использование лампы действительно упрощает поиск и установку компонентов. Это также делает очень очевидный индикатор Power_On!

Я обычно имею дело с онлайн-поставщиками, такими как Jameco, Digikey, Mouser и т. Д., Потому что мы закупаем в больших количествах и Radio
Хижина слишком дорога для большого количества предметов. Тем не менее, у вас должна быть возможность переделать комплект поставки ПК за 5 или 6 долларов.
долларов — меньше, если у вас есть барахло с запчастями. Я полагаю, вы могли бы добавить светодиодный индикатор с понижающим резистором 220 Ом к шине 5 В, чтобы показать, что PS работает.
включился, но вентилятор — довольно хороший намек.У нас есть запасы, работающие 24/7 в течение нескольких месяцев без проблем —
просто расход электроэнергии.

В PS есть довольно большие электролитические конденсаторы, и он все еще может немного шокировать сразу после отключения от сети.
посидеть пару минут, прежде чем копаться внутри. Очевидно, вас могут ударить, если вы все еще находитесь внутри футляра.
подключен — вероятно, не убьет вас, но вы его отпустите (неважно, как я обнаружил эту информацию).

Если у вас есть вопросы, комментарии или исправления, напишите мне.

Обновлено 13 марта 2009 г.

Отчет

: спецификация блока питания только на 12 В, выпущенная в этом году

(Изображение предоставлено Shutterstock)

Текущая спецификация блока питания ATX была довольно согласованной с 1995 года с небольшими изменениями. Однако, по словам CustomPC, это может скоро измениться. Сайт сообщил, что в этом году Intel представит спецификацию дизайна «ATX12VO», где «O» означает «Только».

Первоначально переход коснется только системных интеграторов, поэтому в сфере DIY, вероятно, еще некоторое время будет использоваться существующая конструкция 12 В ATX.

Идея ATX12VO заключается в том, что он избавляется от шин 3,3 В и 5 В, оставляя единственную задачу источника питания — обеспечивать 12 В компонентам системы. Это упрощает конструкцию силовой схемы и, таким образом, снижает стоимость производства компонентов.

Это изменение неудивительно, поскольку многие устройства могут обходиться только 12 В, а многие конструкции блоков питания работают с одной большой шиной 12 В, которая использует простой понижающий преобразователь постоянного тока в постоянный для обеспечения 5 В и 3. 3 В к компонентам, которые еще в нем нуждаются. К этим компонентам относятся жесткие диски, твердотельные накопители с интерфейсом SATA и большинство USB-устройств.

Многие контакты на текущем 24-контактном разъеме ATX являются избыточными по сегодняшним стандартам, и многим современным системам больше не нужны жесткие диски SATA или твердотельные накопители, поскольку твердотельные накопители на базе NVMe M.2 набирают популярность. Более того, различные USB-устройства также постепенно начинают использовать 12 В в качестве входного напряжения для ускорения зарядки, и есть вероятность, что наступит день, когда все новые USB-устройства будут построены на 12 В, а не на 5 В.

Ожидаемый 10-контактный разъем питания материнской платы ATX12VO. (Изображение предоставлено CustomPC)

Говорят, что для оставшихся разъемов на материнской плате будет заменен 10-контактный разъем, при этом разъем питания EPS становится дополнительным дополнительным оборудованием для использования в мощных системах.

Однако мы бы не стали слишком беспокоиться о том, что это создаст проблемы с поддержкой устаревших USB-устройств или жестких дисков. В отчете указывается, что 3,5-дюймовые и 2,5-дюймовые устройства SATA смогут получать питание от материнских плат вместо блоков питания.

Кроме того, есть вероятность, что производители материнских плат продолжат включать понижающее преобразование до 5 В на своих материнских платах для устаревших USB-устройств до тех пор, пока на это есть спрос, поэтому полный переход может занять до десяти лет.

Intel ATX12VO

и характеристики 12 В: объяснение и мнение производителей | ГеймерыNexus

Мы должны начать с этого примечания: 12VO в некотором смысле не новость. Такие компании, как Dell, HP и Lenovo, особенно HP, уже давно используют в своих системах блоки питания только с напряжением 12 В.В этих системах материнские платы оснащены всеми необходимыми для приводов преобразователями постоянного тока в постоянный ток и повышениями. Хотя они существовали, они не были стандартизированы и часто использовались проприетарные разъемы или блоки питания. Сегодняшняя разница заключается в том, что Intel движется к стандартизации этих типов источников питания, и основная причина заключается в том, чтобы упростить выполнение требований к эффективности, установленных государственными органами. Эти правила применяются к готовым системам, а не к системам для домашних мастеров, но недавний вопрос заключался в том, переместится ли это медленно из предварительно собранных в DIY.Во многих сборках, особенно от традиционных OEM-производителей, используются материнские платы, которые нельзя купить в розницу. В предустановленных играх более высокого класса используются материнские платы, которые продаются в розницу, и именно здесь начинают возникать вопросы.

Обратите внимание, что это уже было опубликовано в виде видео на нашем канале, которое находится здесь:

Начнем с предыстории. Intel опубликовала исходную спецификацию ATX (без -12VO) для материнских плат и блоков питания еще в 1995 году и спецификацию ATX12V (без -O) в 2000 году, из которых мы можем сделать два важных вывода: во-первых, ATX12VO — это ревизия собственной технологии Intel. чем Intel пытается схватить бразды правления из ниоткуда, и, во-вторых, спецификация ATX12V устарела.Технически ATX относится к форм-фактору и общему дизайну (в настоящее время в версии 2.2), а ATX12V относится к конкретным функциям блока питания (в настоящее время в версии 2.52). Обратите внимание, что спецификация Intel ATX12V также отвечает за такие вещи, как требование пульсации 120 мВ, подчеркивая, сколько ему лет.

Блоки питания

обеспечивают питание материнских плат 12 В, 5 В и 3,3 В, разделенные на три отдельных «направляющих». Из кабелей, поставляемых с большинством современных блоков питания, контакты 5 В или 3,3 В имеются только в 24-контактных разъемах питания ATX, 4-контактных MOLEX и SATA.6/8-контактные разъемы PCIe, разъемы ATX12V и EPS12V используют только 12 В и заземление. Рельсы 3,3 В и 5 В в основном используются для таких вещей, как некоторые полосы RGB на 5 В, некоторые периферийные устройства и устройства хранения. Большинство 4-контактных разъемов MOLEX используют только 12 В и землю, полностью пропуская линию 5 В.

Питание 3,3 В и 5 В в ПК сейчас используется гораздо меньше, чем это было, когда десятилетия назад писалась спецификация ATX, и используется меньше все время, поэтому Intel опубликовала спецификацию блока питания, которую они называют «только 12 вольт» ( 12VO).ATX12VO использует один 10-контактный разъем для замены существующего 24-контактного разъема ATX, и, как следует из названия, блок питания не будет обеспечивать ничего, кроме единой шины 12 В для всех кабелей. Спецификация включает полный набор электрических и физических рекомендаций по созданию блока питания, который будет совместим с системами 12 В, включая версии CFX, LFX, SFX, TFX и Flex ATX (CFX12VO, LFX12VO и т. Д.), А также рекомендации для разъемы и кабели. Мы сосредоточились на ATX12VO, но идея у них одна.

Когда мы спросили Intel, каковы их цели в отношении 12VO, они ответили: «ATX12VO — это одна из попыток Intel повысить эффективность OEM / SI-систем и продуктов отраслевых партнеров. Одна из ближайших задач ATX12VO — обеспечить соответствие множеству государственных нормативов в области энергетики. Согласно последним правительственным постановлениям в области энергетики, производители оборудования должны использовать крайне низкие уровни мощности системы в режиме ожидания для снижения энергопотребления настольных компьютеров […] Все сегменты настольных ПК имеют множество преимуществ, включая меньший разъем, более гибкую конструкцию плат и улучшенное преобразование энергии .ATX12VO предназначен не только для небольших настольных компьютеров ».

Основным преимуществом устранения других напряжений является эффективность с точки зрения кабелей, цены и энергопотребления. Во-первых, удаление более половины контактов из основного разъема питания делает его менее громоздким, как мы уже видели на Intel Compute Element (или Ghost Canyon NUC), в котором используется 10-контактный штекер 12 Вольт. 24-контактный кабель ATX неизменно является самым большим и сложным для закрепления кабелем на настольном компьютере, и он определяет размер вырезов для кабеля в каждом корпусе ПК.

В новой спецификации Intel говорится о разъемах материнской платы и сквозной передаче питания:

ATX12VO делает основной разъем питания меньше, но это не устраняет необходимость понижения мощности 12 В для таких вещей, как устройства SATA и USB — он просто переключает его на материнскую плату, занимая там ценную недвижимость и перекладывая расходы с один продукт к другому. Материнская плата также должна иметь собственные разъемы питания SATA, так что еще неизвестно, насколько аккуратнее будет полноразмерная компоновка ATX12VO.Это создает значительную нагрузку на недвижимость для материнских плат, особенно материнских плат для энтузиастов, которые уже оснащены интегральными схемами и интерфейсами.

От Intel: «Разъемы материнской платы для этого типа устройств необходимы и описаны в разделе 4.3 спецификации ATX12VO. Разработчикам материнских плат придется решить, сколько устройств и мощность обеспечить для этих типов устройств с питанием 5 В и 12 В. Если устройство работает только на 12 В — например, некоторые светодиоды, вентиляторы или системы жидкостного охлаждения — периферийный разъем 1×4 все еще существует в качестве дополнительного разъема, но источник питания может обеспечить только 12 В и контакты заземления.«Разъем 1×4 относится к MOLEX, который может обеспечивать питание как 5V, так и 12V, но иногда используется только для 12V. Производители блоков питания будут иметь возможность предоставить разъемы MOLEX только с подключенными контактами 12 В и заземлением. 4- и 8-контактные разъемы процессора остались без изменений.

Сделать блок питания, питающий исключительно 12 В, очевидно, проще, чем сделать блок питания 12 В, 5 В и 3,3 В, а также потенциально дешевле. Для изготовления блока питания ATX12VO требуется меньше кабелей, меньше внутреннего оборудования и меньше инженерных работ.Опять же, работа, исключенная со стороны блока питания, просто перекладывается на сторону материнской платы, поэтому стоимость системы в целом может не снизиться. Логично предположить, что, поскольку разъем питания ATX12VO представляет собой урезанную версию существующего 24-контактного разъема, существующие блоки питания ATX будут совместимы с материнскими платами ATX12VO с помощью переходного кабеля, но это намного сложнее. На вопрос, можно ли использовать пассивный переходной кабель, Intel ответила следующим образом:

«Основная проблема при использовании существующего блока питания Multi-Rail ATX для питания новой материнской платы ATX12VO — это шина ожидания 12 В.Существующие блоки питания Multi Rail ATX используют шину 5VSB. Для работы с материнскими платами ATX12VO его необходимо преобразовать в шину 12VSB. Новая резервная шина 12 В была определена в результате совместной работы с поставщиками блоков питания и производителями материнских плат для определения наилучшей общей эффективности. Между 12VSB и 5VSB были незначительные различия в эффективности. Сохранение новых блоков питания только на 12 В / 12 В с питанием от сети было лучшим вариантом для повышения общей энергоэффективности ».

Похоже, совместимость не исключена полностью, но это будет не так просто, как просто подключить правильные контакты.Ожидается, что блоки питания будут иметь больший срок полезности, чем в среднем материнские платы, поэтому это может быть важным моментом, если ATX12VO когда-либо собирается завоевать сообщество DIY. Мы связались с инженером по источникам питания в крупной компании и подтвердили, что адаптер с 5VSB на 12VSB возможен и уже существует, потому что ATX12VO похож на блоки питания, которые Lenovo, HP и Dell уже имеют для OEM-систем. Можно, например, взять переходник HP-ATX12V и повторно подключить его для работы с 12VO.

Любой, кто лично проверял спецификацию, мог заметить, что она озаглавлена ​​«Форм-факторы настольной платформы с одинарной шиной питания ATX12VO (только 12 В)». Мы подтвердили Intel, что «одинарная шина» означает отсутствие шин 5 В или 3,3 В; спецификация позволяет использовать несколько шин 12 В. «Несколько» шин 12 В в настольном блоке питания обычно означают разделение одной шины 12 В для повышения безопасности, а не буквальные дискретные шины, но это тема для другого дня. Intel заявила, что «OEM-производители могут рассмотреть возможность использования нескольких шин 12 В для удовлетворения требований безопасности 240 ВА, которые ограничивают каждую шину 12 В до 20 ампер каждая.”

Во многом теперь ответственность за готовые системы ложится на производителей материнских плат. Производители блоков питания просто должны разобрать свои существующие блоки питания, чтобы соответствовать новой спецификации, в то время как производители материнских плат должны интегрировать новую технологию в и без того переполненные печатные платы, а затем найти способ их охладить. Еще раз запомните один важный момент: это не обязательно означает переход к платформам для энтузиастов DIY — по крайней мере, не сразу, — поскольку это объединяет существующие проприетарные блоки питания от OEM-производителей и системных интеграторов.Цель состоит в том, чтобы соответствовать государственным нормам для готовых систем. Эти правила не распространяются на энтузиастов DIY, и даже более того, в нормативных актах есть лазейка с «высокой расширяемостью», которая, по сути, гласит, что любая система с дискретным графическим процессором в настоящее время невосприимчива к этим требованиям. Это означает, что высокопроизводительные системы Origin, Maingear, Cyberpower или другие системы для энтузиастов смогут продолжать использовать стандартные материнские платы без особых затрат на платы.

Как упоминалось ранее, основной мотивацией для любого принять стандарт ATX12VO является новый, более строгий стандарт для собранных систем, продаваемых в штате Калифорния в июле 2021 года.Производители оригинального оборудования теперь должны будут соблюдать строгие требования к эффективности при нагрузке 20% и 50%, а не только при 100%. Кроме того, Intel пытается заставить компании ускорить работу с требованием к эффективности нагрузки 2%, первоначально предложенным производителям блоков питания примерно в 2018 году. Соответствующий раздел Раздела 20 для блоков питания и ATX12VO — 1605.3, хотя есть еще много других, окружающих этот раздел, который регулирует другие аспекты компьютеров и мониторов. Эти правила будут применяться ТОЛЬКО к новым комплексным системам, продаваемым OEM-производителями и системными интеграторами, но не к ПК для самостоятельной сборки и ПК, проданным до вступления в силу Уровня 2.Уровень 1 уже действует, и по оценкам Intel, большинству моделей настольных компьютеров потребуется снизить энергопотребление в режиме ожидания еще на 5 Вт, чтобы перейти на следующий уровень.

Предыдущие диаграммы были примерами требований Energy Star и CEC, которые производители блоков питания могут захотеть или должны выполнить, в то время как эти диаграммы являются собственными требованиями Intel, встроенными в спецификацию. Самая большая разница в том, что Intel указывает эффективность при нагрузке 10 Вт или 2%, в зависимости от размера блока питания. Эффективность энергопотребления в режиме ожидания должна быть одним из основных преимуществ ATX12VO, и Intel упреждает дальнейшие нормативы энергопотребления, устанавливая это требование к КПД в 2%.

Intel заявляет, что использование единой шины сократит потери при преобразовании переменного тока в постоянный; инженеры блока питания, с которыми мы говорили, подтвердили, что использование только 12 В позволит блокам питания быть более эффективными. Как сообщил Гордон Ма Унг из PCWorld, постоянная подача слабого тока по шинам 3,3 В, 5 В и 12 В делает блоки питания эффективными только на 50-60% в режиме ожидания. Переход на одну шину 12 В повышает эффективность холостого хода и должен помочь OEM-производителям соответствовать этим требованиям, но, конечно же, они могут выбирать другие варианты.

В беседе с инженером производителя блоков питания, которого мы не можем назвать, мы спросили, каково общее мнение об ATX12VO в настоящее время. Ответ начинался так:

«Я думаю, что это хорошая перемена по неправильным причинам. Они делают это, потому что некоторые поставщики блоков питания утверждали, что это было слишком сложно / слишком дорого для удовлетворения требований эффективности нагрузки 2% с блоком питания с несколькими выходами, поэтому, вероятно, вы увидите это только с SI, поскольку они должны соответствовать что 2% требования для прохождения ЦИК.И это требование применимо только в том случае, если у вас есть ПК, который не отвечает требованиям «высокой расширяемости», так что это практически любой ПК с дискретной видеокартой. Фактически, даже современный режим ожидания (в настоящее время) не работает с установленной дискретной видеокартой ».

Мы спросили, повлияет ли это на рынок энтузиастов или на рынок DIY, и наш тот же контакт сказал:

«Не пойдет. На мой взгляд, они должны держать БП как + 12В, так и + 5В. Избавьтесь от + 3,3 В и -12 В. Уменьшите размер основного разъема.Но это все. Это было бы намного проще принять / переварить ».

В разговоре с источником на заводе по производству электроснабжения мы задали некоторые из тех же вопросов. Контакт подтвердил, что эффективность источника питания легче повысить, используя только шину 12 В, и отметил, что это снижает стоимость для отрасли блоков питания, но увеличивает ее для материнских плат. Что касается покупателя и того, и другого — в основном это OEM-производители и системные интеграторы, — стоимость в значительной степени уравняется. Стоимость кабеля снижается, стоимость компонентов DC-to-DC снижается и переходит на материнскую плату, а эффективность повышается.Наш контакт сказал нам, что, по их личному мнению, способы обновления становятся более ограниченными для потребителей, а смешанные стандарты для розничной торговли также усложняют ситуацию, заявив, что они не думали, что это «имеет смысл» в целом.

Затем мы спросили Джона Героу из Corsair, ранее работавшего в JonnyGuru, о переносе ли это некоторых требований с источника питания на материнскую плату. Он ответил:

«Да. Вам по-прежнему нужны + 3,3 В и + 5 В, поэтому вы просто переключаете постоянный ток на постоянный ток с блока питания на материнскую плату.А поскольку в новом стандарте был установлен источник питания +12 В, вам также понадобится постоянный ток в постоянный, чтобы порты USB работали и работали в режиме ожидания ».

Мы также спросили Gerow, будет ли экономия на масштабе и массовое производство сдвигать стандарты блоков питания ATX12VO и ATX12V друг к другу, в конечном итоге попадая в сферу DIY. Он ответил: «Не совсем. Dell, HP и Lenovo уже используют решения типа 12 В, но их разъемы проприетарные. Intel просто берет эту идею и пытается ее стандартизировать.

ATX12VO — это попытка усовершенствовать древний стандарт.Таким образом, он удаляет некоторые функции, не добавляя ничего действительно интересного для сборщиков ПК своими руками, но он также не является стандартом, предназначенным для сборщиков ПК своими руками (на данный момент). В конечном итоге от производителей оборудования зависит, будет ли этот стандарт успешным и получит более широкое распространение или нет, но фабрика, с которой мы говорили, не торопится начинать продажу блоков питания ATX12VO. Intel подтвердила, что продолжит публиковать обычные спецификации ATX. Никто не обязан принимать ATX12VO, даже производители оригинального оборудования. Их единственное обязательство — соответствовать стандартам CEC, а ATX12VO — один из инструментов, который Intel предлагает в помощь.Это не чистый альтруизм — у Intel должны быть свои мотивы для продвижения ATX12VO — но небо не падает, 12VO не такая уж и плохая вещь, и принятие на рынке DIY будет постепенным, если оно вообще произойдет. .

Редакция: Патрик Латан,
Дополнительная информация, ведущий: Стив Берк,
Видео: Киган Галлик, Эндрю Коулман, Джош Свобода

Что такое блок питания? Что такое блок питания ATX?

Блок питания — это аппаратное обеспечение, которое преобразует мощность, подаваемую из розетки, в полезную мощность для многих частей внутри корпуса компьютера.

Он преобразует переменный ток из розетки в постоянную форму мощности, называемую постоянным током, которая требуется компонентам компьютера. Он также регулирует перегрев, контролируя напряжение, которое может изменяться автоматически или вручную в зависимости от источника питания.

Блок питания — важная часть, потому что без него остальное внутреннее оборудование не может работать. Материнские платы, корпуса и блоки питания бывают разных размеров, называемых форм-факторами.Все три должны быть совместимы, чтобы правильно работать вместе.

CoolMax, CORSAIR и Ultra — самые популярные производители блоков питания, но большинство из них входят в комплект поставки компьютера, поэтому при замене блока питания вы имеете дело только с производителями.

Блок питания обычно не обслуживается пользователем. Для вашей безопасности никогда не открывайте блок питания.

Описание блока питания

Блок питания Corsair Enthusiast TX650 V2 ATX12V EPS12V.
© Corsair

Блок питания монтируется прямо внутри задней части корпуса.Если вы проследите за кабелем питания компьютера, вы обнаружите, что он присоединяется к задней части блока питания. Это задняя сторона, как правило, единственная часть блока питания, которую когда-либо увидит большинство людей.

Также на задней панели блока питания есть отверстие для вентилятора, через которое воздух выходит из задней части корпуса компьютера.

Сторона блока питания, обращенная за пределы корпуса, имеет трехконтактный штекерный порт, к которому подключается кабель питания, подключенный к источнику питания. Также часто есть переключатель питания и переключатель напряжения источника питания.

С противоположной стороны блока питания в компьютер выходят большие пучки цветных проводов. Разъемы на противоположных концах проводов подключаются к различным компонентам внутри компьютера для подачи на них питания. Некоторые специально предназначены для подключения к материнской плате, в то время как другие имеют разъемы, которые подходят для вентиляторов, дисководов гибких дисков, жестких дисков, оптических приводов и даже некоторых мощных видеокарт.

Блоки питания имеют номинальную мощность, чтобы показать, какую мощность они могут обеспечить компьютеру.Поскольку для правильной работы каждой части компьютера требуется определенное количество энергии, важно иметь блок питания, который может обеспечить нужное количество. Очень удобный калькулятор Cooler Master Supply Calculator поможет вам определить, сколько вам нужно.

ATX против блоков питания ATX12V

ATX и ATX12V — это спецификации конфигурации, которые важно различать при работе с источниками питания. Для большинства людей заметные различия просто связаны с физическим разъемом на материнской плате.Выбор одного из них зависит от типа используемой материнской платы.

Новейший стандарт, ATX12V v2.4, используется с 2013 года. Материнские платы с ATX12V 2.x используют 24-контактный разъем. Материнские платы ATX используют 20-контактный разъем.

Одна из ситуаций, когда в игру вступает количество контактов, — это когда вы решаете, работает ли конкретный блок питания с вашей системой. Блоки питания, совместимые с ATX12V, хотя и имеют 24 контакта, на самом деле могут использоваться на материнской плате ATX с 20-контактным разъемом.Оставшиеся неиспользуемые четыре контакта просто отсоединятся от разъема. Если в корпусе вашего компьютера есть место, это вполне выполнимая установка.

Однако это не работает наоборот. Если у вас есть блок питания ATX с 20-контактным разъемом, он не будет работать с новой материнской платой, требующей подключения всех 24 контактов. Дополнительные четыре контакта были добавлены в эту спецификацию для подачи дополнительного питания через шины 12 В, поэтому 20-контактный блок питания не может обеспечить достаточную мощность для работы такой материнской платы.

Еще кое-что, что отличает блоки питания ATX12V и ATX, — это разъемы питания, которые они предоставляют. Стандарт ATX12V (начиная с версии 2.0) требует 15-контактного разъема питания SATA. Если вам нужно использовать устройство SATA, но в блоке питания нет разъема питания SATA, вам понадобится адаптер Molex с 4 контактами на 15 контактов SATA (например, этот).

Еще одно различие между ATX и ATX12V — это рейтинг энергоэффективности, который определяет, сколько энергии снимается со стены по сравнению с выходной мощностью компьютера.Некоторые старые блоки питания ATX имеют рейтинг эффективности ниже 70 процентов, тогда как стандарт ATX12V требует минимального рейтинга 80 процентов.

Другие виды блоков питания

Описанные выше блоки питания — это те, которые находятся внутри настольного компьютера. Другой тип — внешний источник питания.

Например, на некоторых игровых консолях блок питания подключен к кабелю питания, который должен проходить между консолью и стеной. Вот пример блока питания Xbox One, который выполняет ту же функцию, что и настольный блок питания, но является внешним и, следовательно, полностью перемещаемым, и его гораздо проще заменить, чем настольный блок питания:

Блок питания Xbox One.

Другие похожи, например, блок питания, встроенный в некоторые внешние жесткие диски, которые необходимы, если устройство не может потреблять достаточно энергии от компьютера через USB.

Внешние источники питания выгодны, потому что они позволяют устройству быть меньше и привлекательнее. Однако некоторые из этих типов блоков питания прикрепляются к кабелю питания и, поскольку они обычно довольно большие, иногда затрудняют размещение устройства у стены.

Источник бесперебойного питания (ИБП) — еще один тип источника питания.Они похожи на резервные источники питания, которые обеспечивают питание, когда основной блок питания отключен от обычного источника питания. Поскольку блоки питания часто становятся жертвами скачков напряжения и скачков напряжения из-за того, что устройство получает электроэнергию, вы можете подключить устройство к ИБП (или к сетевому фильтру).

Спасибо, что сообщили нам!

Расскажите, почему!

Другой

Недостаточно деталей

Трудно понять

, сколько ампер на шине БП 12В используется материнской платой и процессором?

Прямой ответ:

Единственный способ измерить истинный ток, протекающий по шине 12 В, — это использовать амперметр Clamp , также называемый токовыми клещами .Чтобы быть конкретным, вам нужен тот, который может измерять токи постоянного тока, поэтому тот, который использует петлю обратной связи на эффекте Холла, предпочтительно с цифровым дисплеем.

См. Https://en.wikipedia.org/wiki/Current_clamp

Это не дешево, но все же доступно.

Для измерения силы тока вы выбираете все желтые провода от разъема питания ATX, 6- или 8-контактного разъема PCIe или разъема питания жесткого диска и зажимаете зажим вокруг них и только вокруг них. Эти желтые провода используются для 12 В.Точно так же красный — 5 В, а оранжевый — 3,3 В. Черный — GND.

Затем вы видите ток на дисплее токовых клещей.

Готово.


Дальнейшие мысли:

Если вы не можете достать амперметр с зажимами, то используйте дешевый измеритель мощности между розеткой и кабелем питания, чтобы получить полную мощность, потребляемую компьютером. Эффективность блока питания колеблется от 70% до 95% в зависимости от рейтинга 80Plus блока питания. Кроме того, если вы предположите, что 90% этой мощности идет по шинам 12 В, вы будете правы для современной системы.Итак

wall_socket_power × psu_efficiency × 90% / 12В

также является хорошим предположением для токов, проходящих через шину 12 В.

В настоящее время большая часть питания ЦП, памяти и материнской платы поступает от шины 12 В, а также от жесткого диска и внешнего графического процессора PCIe. Карты PCIe без графического процессора обычно используют шину 3,3 В. Шина 5 В в основном не используется, за исключением в некоторых случаях электроники жесткого диска. В этом отношении ваш расчет верен для пикового значения, включая эффективность преобразования энергии.90% оптимистично, но возможно. Тем не менее, вам следует добавить 3 Вт для каждой карты памяти и 5-10 Вт для набора микросхем материнской платы.

В целом, вашего блока питания достаточно для нормального использования, и единственный момент, когда он приблизится к своей полной емкости, — это при загрузке, когда все диски вращаются одновременно, а ЦП еще не запрограммирован на энергосбережение. и работает на полном газу. Если это становится проблемой, диски можно настроить так, чтобы операционная система могла их вращать в шахматном порядке.

Если вы подозреваете, что источник питания является причиной нестабильности, подключение осциллографа к отдельным шинам напряжения и наблюдение за колебаниями напряжения при различных нагрузках является гораздо лучшим показателем недостаточного или неисправного блока питания, чем измерение тока шины.

Все, что вам нужно знать об источниках питания

[nextpage title = ”Введение”]

В этом руководстве мы объясним все, что вам нужно знать об источниках питания для ПК, включая форм-факторы, эффективность, коррекцию коэффициента мощности (PFC), шины, защиту, пульсации и многое другое. Вы узнаете, что номинальная мощность блока питания не должна быть единственным фактором, который следует учитывать при покупке блока питания.

Но прежде чем идти дальше, давайте объясним, что именно делает блок питания.

Как электрическое устройство, компьютеру требуется питание для правильной работы его компонентов. Устройство, отвечающее за подачу питания на компьютер, — это блок питания. Короче говоря, мы могли бы сказать, что основная функция источника питания — преобразование переменного напряжения (также известного как AC), которое подается системой электроснабжения, в постоянное напряжение (также известное как DC). Другими словами, источник питания преобразует обычное переменное напряжение 110 В или 220 В в постоянное напряжение, используемое электронными компонентами ПК, которое равно +3.3 В, +5 В, +12 В и -12 В (переменные напряжения различаются по всему миру. В этом руководстве мы будем использовать «110 В» в качестве общей метки для напряжений 110, 115 и 127 В, тогда как мы будет использовать «220 В» в качестве общего ярлыка для напряжений 220, 230 и 240 В. Япония, которая использует сеть 100 В, является единственной страной за пределами этого диапазона.) Источник питания также присутствует в процессе охлаждения ПК , как мы подробно объясним позже.

Существует два основных исполнения источников питания: линейный и импульсный.

Линейные источники питания работают, получая 110 В или 220 В от электросети и понижая его значение (например, 12 В) с помощью трансформатора. Это более низкое напряжение по-прежнему является переменным. Затем выпрямление выполняется набором диодов, преобразующих это переменное напряжение в пульсирующее. Следующим шагом является фильтрация, которую выполняет электролитический конденсатор, преобразующий это пульсирующее напряжение почти в постоянное. Постоянный ток, полученный после конденсатора, немного колеблется (это колебание называется пульсацией), поэтому необходим каскад регулирования напряжения, выполненный с помощью стабилитрона (часто с помощью силового транзистора) или интегральной схемы регулятора напряжения.После этого этапа на выходе будет истинное постоянное напряжение.

Хотя линейные блоки питания очень хорошо работают для нескольких приложений с низким энергопотреблением (беспроводные телефоны — это приложение, которое приходит на ум), когда требуется высокая мощность, линейные блоки питания могут быть очень большими.

Размер трансформатора и емкость (и, следовательно, размер) электролитического конденсатора обратно пропорциональны частоте входного переменного напряжения; чем ниже частота переменного напряжения, тем больше размер этих компонентов и наоборот.Поскольку линейные источники питания по-прежнему используют частоту 60 Гц (или 50 Гц, в зависимости от страны) от электросети (что является очень низкой частотой), трансформатор и конденсатор огромны.

Строить линейный блок питания для ПК было бы безумием, поскольку он был бы очень большим и тяжелым. Решением было использовать подход высокочастотного переключения.

В источниках питания с высокочастотным импульсным режимом (также известных как SMPS) частота входного напряжения увеличивается перед входом в трансформатор (типичные значения в диапазоне кГц).При увеличении частоты входного напряжения трансформатор и электролитические конденсаторы могут быть очень маленькими. Такой источник питания используется в ПК и некоторых других типах электронного оборудования, например DVD-плеерах. Имейте в виду, что «переключение» — это сокращение от «высокочастотное переключение», которое не имеет никакого отношения к тому, есть ли у источника питания переключатель включения / выключения или нет…

Блок питания, вероятно, является самым запущенным компонентом на ПК. Обычно при покупке компьютера мы просто учитываем тип процессора и частоту, модель материнской платы, модель видеокарты, количество установленной памяти, емкость жесткого диска, и забываем о блоке питания, который, по сути, , это тот, кто обеспечивает «топливо» для правильной работы компонентов ПК.

Источник питания хорошего качества и с достаточной мощностью может увеличить срок службы вашего оборудования и снизить счет за электроэнергию (мы объясним почему при обсуждении эффективности). На всякий случай, качественный блок питания будет стоить менее 5% от общей стоимости ПК. С другой стороны, некачественный источник питания может вызвать несколько периодических проблем, большинство из которых сложно решить. Неисправный или злонамеренный источник питания может заблокировать ПК, привести к сбойным блокам жесткого диска, вызвать печально известные ошибки «синего экрана смерти» и привести к случайным сбросам и зависаниям, а также ко многим другим проблемам.

В этом руководстве мы обсудим основы, которые должен знать каждый пользователь. Если вы хотите узнать еще больше о внутреннем устройстве блока питания ПК, мы рекомендуем, чтобы после прочтения этого руководства вы прочитали его продолжение, Анатомия импульсных источников питания, где мы подробно объясняем, как работают основные внутренние компоненты блока питания ПК. .

[название следующей страницы = «Подключение переменного тока»]

Первое, что вам следует знать, это то, что ваш блок питания должен быть совместим с напряжением переменного тока, используемым в вашем городе.Наиболее распространенными являются «110 В», охватывающие напряжения, которые приблизительно соответствуют этому значению (например, 115 В и 127 В), и «220 В» (например, 230 В и 240 В).

Большинство источников питания будут иметь либо переключатель 110/220 В, либо «автоматический выбор диапазона» или «автоматический выбор», что означает, что они могут работать при «любом» напряжении переменного тока (обычно от 100 до 240 В; диапазон составляет напечатано на этикетке блока питания в разделе «Вход переменного тока», см. рис. 3). Следовательно, они не поставляются с переключателем такого типа. Обычно производители создают схему «автоматического выбора» через активную схему PFC, поэтому все источники питания с активным PFC будут иметь «автоматический выбор» и не будут иметь переключателя 110 В / 220 В.Только очень немногие источники питания с автоматическим выбором напряжения не имеют активной функции коррекции коэффициента мощности. Конечно, мы объясним, что это за схема, позже.

Не все блоки питания без переключателя 110/220 В поддерживают автоматический выбор диапазона. Некоторые блоки питания могут работать только при определенном напряжении. Чаще всего они ориентированы на европейский рынок. Если вы видите источник питания без напряжения 110/220 В, всегда полезно дважды проверить этикетку источника питания, под которой может работать переменное напряжение.

Рисунок 1: Переключатель питания 110/220 В.

Рисунок 2: Блок питания с автоматическим выбором напряжения — без переключателя 110/220 В. Обычно это означает, что в агрегате есть активная коррекция коэффициента мощности.

Рисунок 3: Диапазон напряжения для блоков питания с автоматическим выбором напряжения указан на этикетке блока питания.

Соединение между источником питания и розеткой переменного тока осуществляется через шнур питания. Этот шнур питания должен иметь вилку, совместимую со стандартом, используемым в вашей стране.Если ваша вилка не соответствует этому стандарту, вам понадобится адаптер. Два наиболее распространенных типа вилок — это североамериканский (NEMA 5-15) и европейский (CEE 7/7). В других странах могут использоваться вилки других типов (например, в Великобритании используется вилка BS 1363).

Рисунок 4: шнур питания для Северной Америки.

Рисунок 5: Европейский шнур питания .

На конце шнура питания, подключенном к источнику питания, используется вилка трапециевидной формы, называемая IEC C13, а в розетке для шнура питания, расположенной на источнике питания, используется вилка, называемая IEC C14.Для этого соединения также можно использовать другие штекеры, например IEC C19 и IEC C20, но они не так распространены.

[nextpage title = «Штепсельные вилки»]

В настоящее время блоки питания имеют следующие разъемы для питания компонентов от ПК:

  • Главный разъем материнской платы: это один из кабелей, которые необходимо подключить к материнской плате ПК. В нем используется большая 24-контактная вилка, которая является самой большой вилкой на блоке питания. Большинство источников питания позволяют преобразовать этот 24-контактный штекер в 20-контактный (обычно путем удаления дополнительных 4 контактов), что является стандартом, используемым на старых материнских платах.Материнские платы, использующие 24-контактный разъем, называются ATX12V 2.x, а материнские платы, использующие 20-контактный разъем, могут быть либо материнской платой ATX12V 1.x, либо материнской платой ATX. Обратите внимание, что эти названия относятся к электрическому подключению материнской платы, а не к физическому размеру материнской платы. ATX — это также имя, используемое для описания размера материнской платы, что может сбить с толку некоторых пользователей (у вас может быть материнская плата ATX с разъемом ATX12V 2.x). Например, в этом случае ATX относится к размеру материнской платы, 12 дюймов x 9.6 дюймов или 30,5 см x 24,4 см.

Рисунок 6: Главный разъем материнской платы (24-контактный штекер). Посмотрите, как его можно преобразовать в 20-контактный разъем.

Рисунок 7: Главный разъем материнской платы (24-контактный штекер).

  • Разъем ATX12V: этот 4-контактный разъем используется для подачи электрического тока на системный ЦП и должен быть установлен на материнской плате. Установка этого разъема обязательна — если вы не используете разъем EPS12V (см. Ниже).

Рисунок 8: Разъем ATX12V.

Рисунок 9: Разъем ATX12V.

  • Разъем EPS12V: Этот 8-контактный разъем выполняет ту же функцию, что и ATX12V, то есть обеспечивает электрический ток для системного ЦП. Поскольку у него восемь контактов вместо четырех, он способен обеспечивать больший ток. Не все блоки питания и не все материнские платы поставляются с этим разъемом. На некоторых источниках питания разъем EPS12V получается соединением двух разъемов ATX12V.Если у вашей материнской платы и у источника питания есть этот разъем, используйте его вместо разъема ATX12V. Материнские платы, которые поставляются с этим разъемом, часто имеют половину разъема, покрытую наклейкой или пластиковой крышкой, что позволяет использовать разъем блока питания ATX12V на разъеме материнской платы EPS12V. Вы можете установить разъем ATX12V от источника питания на разъем EPS12V на материнской плате, однако это не рекомендуется.

Рисунок 10: Разъем EPS12V.

Рисунок 11: На некоторых источниках питания разъем EPS12V получается соединением двух разъемов ATX12V.

Рисунок 12: Разъем EPS12V на материнской плате.

[nextpage title = «Штепсельные вилки (продолжение)»]

  • Разъемы вспомогательного питания PCI Express: Эти разъемы используются для обеспечения большего электрического тока устройствам PCI Express, особенно видеокартам. Поэтому их еще называют разъемами питания видеокарт или просто PEG (PCI Express Graphics).Не всем видеокартам требуется дополнительное питание, но если ваша видеокарта имеет такую ​​вилку, вам необходимо установить дополнительный разъем питания. Эти разъемы могут иметь шесть или восемь контактов. Практически все видеокарты, которым требуется дополнительное питание, требуют 6-контактной версии этого разъема; только видеокарты самого высокого класса требуют 8-контактного типа. Некоторым видеокартам очень высокого класса может даже потребоваться использование двух вспомогательных кабелей питания для их питания. Вы должны обратить особое внимание на 8-контактный разъем, потому что он очень похож на разъем EPS12V.Хотя теоретически вы не можете вставить штекер EPS12V в видеокарту, если сильно надавить, это соединение станет возможным. Однако это также может привести к сильному короткому замыканию. К счастью, все блоки питания имеют защиту от короткого замыкания и не включатся, если вы сделаете эту ошибку. На разъеме EPS12V провода +12 В (желтые) расположены с той же стороны, что и небольшая защелка на разъеме, а на 8-контактном разъеме питания видеокарты заземляющие (черные) провода находятся в эта позиция.В настоящее время все блоки питания должны иметь как минимум одну 6-контактную вилку, а модели с более высокой мощностью предусматривают два, три или четыре кабеля, обеспечивающие дополнительное питание для нескольких видеокарт или дополнительное питание для видеокарт очень высокого класса, требующих два силовых кабеля. Вы также можете превратить любую стандартную вилку периферийного питания в разъем питания видеокарты через адаптер. Это очень удобно, если вы устанавливаете дополнительную видеокарту или имеете старый блок питания и не хотите заменять свое устройство.

Рисунок 13: Шестиконтактный разъем PEG. Этот конкретный блок питания предоставляет вам два дополнительных контакта, чтобы вы могли превратить этот 6-контактный штекер в 8-контактный. Мы называем этот тип разъема 6/8-контактным разъемом.

Рисунок 14: Шестиконтактный разъем PEG на видеокарте.

  • Разъемы питания SATA: Этот тип разъема используется для подачи питания на устройства с последовательным интерфейсом ATA (SATA), такие как жесткие и оптические диски. Если в вашем блоке питания недостаточно этих разъемов для вашей системы, вы можете преобразовать любую стандартную вилку периферийного питания в разъем питания SATA с помощью адаптера.Физически он плоский и имеет 15 контактов.

Рисунок 15: Разъем питания SATA.

Рисунок 16. Разъем питания SATA на жестком диске.

  • Периферийные разъемы: это 4-контактный разъем питания общего назначения трапециевидной формы, который часто используется для питания жестких дисков, оптических приводов, вентиляторов, систем освещения и т. Д. Хотя в настоящее время используются новые жесткие диски и оптические приводы. подключается к блоку питания через разъемы питания SATA.До выпуска разъема PEG на видеокартах высокого класса использовался этот тип разъема для обеспечения дополнительной мощности карты. Эти разъемы существуют с момента появления самого первого ПК IBM в 1981 году, и IBM использовала компанию Molex в качестве поставщика для них. Многие называли эти заглушки «Molex» только потому, что на первых ПК можно было прочитать на них «Molex». Люди думали, что это название разъема, не подозревая, что Molex был производителем. Мы предпочитаем называть их «стандартные разъемы питания для периферийных устройств».«

Рисунок 17: Стандартный разъем питания для периферийных устройств.

Рисунок 18: Стандартный разъем питания для периферийных устройств на оптическом блоке.

  • Разъем питания дисковода гибких дисков: это уменьшенная версия предыдущего разъема, используемая для питания 3,5-дюймовых дисководов гибких дисков. Несколько старых видеокарт использовали этот штекер для обеспечения дополнительного питания вместо использования предыдущего разъема.

Рисунок 19. Разъем питания дисковода гибких дисков .

Рисунок 20: Разъем питания на дисководе гибких дисков.

[nextpage title = «Старые вилки питания»]

Две описанные ниже заглушки больше не используются, но вы можете найти их при разборке старых ПК.

  • Шестиконтактный разъем вспомогательного питания материнской платы: этот разъем был выпущен вместе со спецификацией ATX12V 1.x, но только на нескольких материнских платах (особенно на платах socket 423 и ранних платах socket 478) он использовался.

Рисунок 21: Шестиконтактный разъем вспомогательного питания.

  • 12-контактный разъем материнской платы: Этот разъем был основным разъемом материнской платы на материнских платах AT и источниках питания AT. Он устарел с введением стандарта ATX. В нем использовались два шестиконтактных разъема, и проблема заключалась в том, что эти два шестиконтактных разъема можно было вставить с любой стороны 12-контактного разъема на материнской плате. Чтобы избежать ошибок, вы должны установить эти разъемы таким образом, чтобы черные провода располагались по центру разъема (см. Рисунок 22).

Рисунок 22: Разъем питания AT.

[nextpage title = ”Форм-факторы”]

Существует несколько различных форм-факторов (или «стандартов») для блоков питания ПК. Эти форм-факторы определяют не только физический размер блока питания, но и тип разъемов, которые он имеет. На момент написания этой статьи ATX12V 2.x и EPS12V являются наиболее распространенными стандартами для блоков питания ПК.

  • AT: Этот стандарт был введен IBM PC AT в 1984 году и использовался до тех пор, пока стандарт ATX не стал популярным в середине 1990-х годов.Этот блок питания выдает четыре напряжения: +5 В, +12 В, -5 В и -12 В, а для основного разъема материнской платы используется 12-контактный разъем (см. Предыдущую страницу). Из представленных разъемов в этом блоке питания используются только стандартные разъемы питания периферийных устройств и разъем питания дисковода гибких дисков, в дополнение к 12-контактному кабелю материнской платы.
  • ATX: В 1996 году Intel представила новую компоновку материнской платы под названием ATX, чтобы заменить старую компоновку AT. Поскольку материнская плата ATX имела совершенно другие физические размеры, также потребовались новые корпуса («корпуса ATX» в отличие от «корпусов AT», используемых до сих пор).В этой новой компоновке материнской платы Intel также предложила новый тип блока питания, обеспечивающий новые функции, такие как использование нового 20-контактного разъема материнской платы и введение двух новых напряжений +3,3 В и + 5VSB, также известных как « резервная мощность ». Этот выход всегда включен, даже когда компьютер выключен, что позволяет компьютеру выключаться, не требуя нажатия переключателя включения / выключения. Из представленных разъемов в этом блоке питания используется только 20-контактный разъем материнской платы, стандартные разъемы питания периферийных устройств и разъем питания дисковода гибких дисков.Вы можете найти полную спецификацию ATX здесь.
  • ATX12V 1.x: с современными процессорами, требующими большего количества энергии, к источникам питания ATX были добавлены два дополнительных разъема: четырехконтактный разъем 12 В (разъем ATX12V) и шестиконтактный вспомогательный источник питания (см. Предыдущую страницу). ATX12V 1.3 представил разъем питания Serial ATA. Вы можете найти полную спецификацию ATX12V 1.x здесь.
  • ATX12V 2.x: этот форм-фактор, представленный с выпуском шины PCI Express, модернизировал разъем питания основной материнской платы до 24-контактной модели (рисунки 6 и 7) и представил дополнительный разъем питания PCI Express (PEG, рисунки 13 и 14).Вы можете найти полную спецификацию ATX12V 2.x здесь. Это стандарт, используемый в настоящее время.
  • EPS12V: этот форм-фактор был создан SSI (Server System Infrastructure) для серверов начального уровня. В его текущей версии используются те же разъемы, что и в ATX12V 2.x, с добавлением нового разъема питания процессора, называемого EPS12V (см. Рисунки 10, 11 и 12). Поскольку он имеет только один новый разъем, многие производители блоков питания предлагают модели ATX12V v2.x и EPS12V одновременно. Вы можете найти полную спецификацию EPS12V здесь.

Итак, мы рассмотрели основные форм-факторы блоков питания для настольных ПК. Однако для ПК с малым форм-фактором доступны другие форм-факторы.

  • LFX12V: LFX означает низкопрофильный форм-фактор. Он использует те же разъемы, что и ATX12V v2.x, но имеет другой физический размер: 2,44 дюйма x 2,83 дюйма x 8,27 дюйма (62 мм x 72 мм x 210 мм) (Ш x В x Г).

Рисунок 23: Источник питания LFX12V.

  • CFX12V: CFX означает компактный форм-фактор.Он использует те же разъемы, что и ATX12V v2.x, и имеет L-образную форму на основе стандартного размера ATX с шириной 5,90 дюйма (150 мм) вверху и шириной 4 дюйма (101,6 мм) внизу. Вы можете найти полную спецификацию CFX12V здесь.
  • TFX12V: TFX означает тонкий форм-фактор. Он использует те же разъемы, что и ATX12V v2.x, но имеет другой физический размер: 2,56 дюйма x 3,35 дюйма x 6,89 дюйма (65 мм x 85 мм x 175 мм) (Ш x В x Г). Вы можете найти полную спецификацию TFX12V здесь.
  • SFX12V: SFX означает малый форм-фактор.Вы можете найти полную спецификацию SFX12V здесь. Он использует те же разъемы, что и ATX12V v2.x, и доступен в нескольких различных физических размерах и конфигурациях вентиляторов:
    • 3,94 дюйма x 1,97 дюйма x 4,92 дюйма (100 мм x 50 мм x 125 мм) (Ш x В x Г) (также известный как профиль вентилятора 40 мм)
    • 3,94 дюйма x 2,5 дюйма x 4,92 дюйма (100 мм x 63,5 мм x 125 мм) (Ш x В x Г) (также известный как профиль вентилятора с верхним креплением)
    • 125 мм x 63,5 мм x 100 мм (4,92 дюйма x 2,5 дюйма x 3,94 дюйма) (Ш x В x Г) (также известный как профиль вентилятора с уменьшенной глубиной установки сверху)
    • 3.94 x 2,5 x 4,92 дюйма (100 x 63,5 x 125 мм) (Ш x В x Г) (также известный как профиль вентилятора 60 мм)
    • 138 x 86 x 101,4 мм (5,43 x 3,38 x 3,99 дюйма) (Ш x В x Г) (также известный как профиль PS3)

[название следующей страницы = «Охлаждение»]

Блок питания играет решающую роль в процессе охлаждения ПК. Его точная функция — выводить горячий воздух из корпуса. Воздушный поток внутри ПК работает следующим образом. Холодный воздух поступает через канавки в передней части корпуса.Воздух нагревается такими устройствами, как процессор, видеокарта, набор микросхем и т. Д. Поскольку горячий воздух менее плотный, чем холодный, естественная тенденция — подниматься. Следовательно, горячий воздух остается в верхней части корпуса. Вентилятор охлаждения блока питания работает как вытяжной вентилятор, вытягивая горячий воздух из этой области и выдувая его из компьютера. Посмотрите, как это работает, на рис. 24. Источники питания Hi-End класса имеют два или три охлаждающих вентилятора. В некоторых корпусах сзади есть место для установки дополнительного вентилятора.

Рисунок 24: Воздушный поток внутри корпуса ПК.

Обычно блоки питания ПК используют 80-мм вентилятор на задней стороне, как вы можете видеть на Рисунке 25. Несколько лет назад производители блоков питания начали использовать вентилятор 120 мм или больше в нижней части блока питания, заменив заднюю. панель блока питания с сеткой. Обычно использование вентилятора большего размера обеспечивает больший поток воздуха и более низкий уровень шума, поскольку вентилятор большего размера может вращаться с меньшей скоростью, чтобы обеспечить такой же поток воздуха, как и вентилятор меньшего размера.

Рисунок 25: Блок питания с 80 мм на задней панели.

Рис. 26: Блок питания с 120 мм внизу.

Некоторые блоки питания могут иметь более одного вентилятора, в то время как некоторые производители предоставляют регулировку скорости вентилятора блока питания или кабель, чтобы вы могли контролировать скорость вентилятора с помощью вашей любимой программы мониторинга. Этот кабель необходимо установить на пустой коннектор вентилятора на материнской плате. (Эти особенности встречаются не так часто.)

Проблема с вентилятором блока питания и / или дополнительными вентиляторами — это производимый ими шум.Иногда это такой раздражающий шум, что простая работа за компьютером вызывает у нас стресс. Чтобы уменьшить шум, в настоящее время в большинстве источников питания используется схема для управления скоростью вращения вентилятора в соответствии с внутренней температурой источника питания. Когда блок питания холодный, вентилятор вращается с меньшей скоростью, что снижает шум.

Чтобы обеспечить лучший воздушный поток и организацию внутри ПК, в некоторых источниках питания используется модульная кабельная система, в которой периферийные кабели подключаются к устройству с помощью разъемов, вместо того, чтобы быть постоянно подключенными к источнику питания.Вы можете отсоединить кабели, которые не будете использовать. Некоторые производители также продают дополнительные кабели для модульной кабельной системы своих источников питания, помогая пользователям в будущих обновлениях. Обычно в источниках питания, использующих модульные кабельные системы, кабель основной материнской платы и кабели ATX12V / EPS12V постоянно подключены к блоку, как показано на блоке питания, изображенном на Рисунке 27.

Рисунок 27: Модульная кабельная система.

[nextpage title = ”Power”]

Блоки питания

имеют маркировку в соответствии с максимальной мощностью, которую они могут выдавать — по крайней мере, теоретически.Проблема в том, что многие блоки питания не могут обеспечить мощность, указанную на этикетке, обычно из-за того, что производитель:

  • Обозначил блок питания пиковой мощностью, которая может быть достигнута только в течение нескольких секунд, а в некоторых случаях менее чем за одну секунду.
  • Измерена максимальная мощность блока питания при нереалистичной комнатной температуре, обычно 25 ° C (77 ° F), в то время как температура внутри ПК всегда будет выше — минимум 35 ° C (95 ° F). Полупроводники и катушки индуктивности имеют физический эффект, называемый понижением номинальных характеристик, когда они теряют способность передавать ток (и, следовательно, мощность) с повышением температуры (см. Рисунок 28).Таким образом, максимальная мощность, измеренная при более низкой температуре, не может быть достигнута при повышении температуры.
  • Просто соврал. Вероятно, это относится к «универсальным» единицам.

Чтобы проиллюстрировать влияние температуры на способность источника питания передавать ток, рассмотрим кривую снижения номинальных характеристик, представленную на рисунке 28, которая относится к транзистору под названием FQA24N50. Как видите, этот транзистор может выдавать до 24 А при работе при 25 ° C (77 ° F), но как только температура увеличивается (ось x), максимальный поддерживаемый ток (ось y) уменьшается.При 100 ° C (212 ° F) максимальный ток, который может выдавать данное устройство, составляет 15 А, что на 37,5% меньше. Мощность, которая измеряется в ваттах, представляет собой коэффициент между током и напряжением (P = V x I). Если бы этот транзистор работал при 12 В, мы бы увидели уменьшение максимальной мощности с 288 Вт (12 В x 24 А) до 180 Вт (12 В x 15 А).

Рисунок 28: Кривая снижения номинальных значений транзистора.

Зная об этой ситуации, уважаемые производители начали раскрывать, при какой температуре маркируются их блоки питания.Вы можете найти некоторые блоки питания на рынке, где производитель гарантирует, что они могут выдавать указанную мощность при 40 ° C, 45 ° C или даже при 50 ° C.Другими словами, производитель гарантирует, что они могут передавать указанную мощность в течение реальный сценарий не только в лаборатории производителя. Это надежный параметр при принятии решения, какой блок питания купить.

Вы можете подумать, что максимальная мощность, которую может выдать блок питания, — это просто сумма максимальной мощности, которую может выдать каждый выход.По правде говоря, математика не так проста из-за того, как блоки питания ПК работают внутри. Основные положительные выходы (+12 В, +5 В и +3,3 В) разделяют некоторые компоненты, поэтому, хотя каждый выход имеет индивидуальный максимальный выход, этот максимум может быть достигнут только тогда, когда с других выходов не поступает питание.

Чаще всего используются выходы +5 В и +3,3 В. Несмотря на то, что они имеют индивидуальные ограничения по максимальному току и мощности, эти максимальные значения могут быть получены только в том случае, если с другого выхода не поступает питание.Вместе они имеют общую максимальную мощность, которая ниже, чем простое сложение максимальной мощности с выходов +5 В и +3,3 В.

В качестве практического примера рассмотрим источник питания на рисунке 29. На этикетке указано, что выход +5 В может выдавать до 24 А, что соответствует 120 Вт, или 5 В x 24 А. Выход +3,3 В также может доставляют до 24 А, что соответствует 79,2 Вт, или 3,3 В x 24 А. Максимальная суммарная мощность, указанная на этикетке, составляет 155 Вт (меньше, чем простое добавление максимальной мощности, которую каждый выход может выдавать индивидуально), что быть 199.2 Вт или 120 Вт + 79,2 Вт.

То же самое верно и для выходов +12 В. В блоке питания, показанном на Рисунке 29, каждая шина +12 В может выдавать до 16 А (192 Вт или 12 В x 16 А), но максимальная суммарная мощность для выходов +12 В составляет 504 Вт, а не 768 Вт ( 192 Вт x 4).

И, наконец, у нас есть комбинированная мощность для +12 В, +5 В и +3,3 В одновременно, что не является простым добавлением максимальной комбинированной мощности для выходов +5 В / + 3,3 В с максимальная суммарная мощность для выходов +12 В.В источнике питания из нашего примера максимальная суммарная мощность для этих выходов составляет 581,5 Вт, а не 659 Вт (155 Вт + 504 Вт).

Рисунок 29: Типичная этикетка блока питания.

Наконец, у нас есть распределение мощности, о чем знают очень немногие пользователи. Два блока питания с одинаковой максимальной мощностью могут иметь совершенно разное распределение мощности.

В настоящее время обычный ПК потребляет больше энергии от выходов +12 В. Это происходит потому, что два наиболее энергоемких компонента ПК — ЦП и видеокарта — подключены к выходам + 12 В (через разъем ATX12V / EPS12V и через разъем PEG, соответственно).

Еще раз взгляните на этикетку блока питания на Рисунке 29. На этой этикетке вы можете ясно видеть, что в этом блоке питания используется обновленный проект, в котором блок питания может выдавать больше мощности с выходов +12 В (504 Вт). чем с выходов +3,3 В / + 5 В (155 Вт).

Теперь рассмотрим источник питания, показанный на Рисунке 30. Этот блок может выдавать больше мощности / тока с выходов +5 В / + 3,3 В, чем с выходов +12 В, что означает, что в этом источнике питания используется устаревшая конструкция.Вы не поверите, но этот блок питания все еще продается, и есть несколько блоков питания с устаревшим дизайном.

Рисунок 30: Этикетка блока питания устаревшей конструкции.

Таким образом, покупайте блоки питания с максимальной мощностью на выходах +12 В, а не на линиях +5 В / + 3,3 В.

Наконец, вам нужно знать, сколько энергии ваш ПК действительно потребляет, прежде чем выбирать блок питания. В Интернете есть несколько калькуляторов, которые могут вам в этом помочь; мы рекомендуем это.Мы также рекомендуем вам выбрать источник питания, который будет работать от 40% до 60% своей максимальной мощности. На это есть две причины. Первое — это эффективность, и мы объясним эту тему позже. Во-вторых, у вас будет запас для будущих обновлений. Получите результат, полученный на калькуляторе, и умножьте его на 2. Это мощность блока питания, которую мы рекомендуем вам купить. (Вы будете удивлены, что большинству систем потребуется блок питания мощностью менее 450 Вт, даже с учетом наших настроек.)

[nextpage title = ”Эффективность”]

Эффективность источника питания показывает, какая часть мощности, потребляемой из электросети, эффективно преобразуется в постоянный ток. Эффективность — это соотношение между мощностью, потребляемой от стены, и мощностью, фактически передаваемой на ПК.

КПД = мощность постоянного / переменного тока

Например, если ваш компьютер потребляет 250 Вт, а ваш блок питания потребляет 350 Вт от стены, это означает, что эффективность вашего блока питания составляет 71.4 процента.

Хорошие блоки питания обеспечат КПД не менее 80%, чем выше, тем лучше. Мы рекомендуем покупать блоки питания с КПД не менее 80%.

Блок питания с более высоким КПД дает два преимущества. Во-первых, это приводит к снижению счета за электроэнергию. Используя тот же пример, что и выше, если вы замените этот блок питания блоком с эффективностью 80%, вы потянете только 312,5 Вт из стены, тем самым сэкономив 37,5 Вт. Если вы часто используете компьютер (например, во время целый день, каждый день), эта экономия заметна, и в конце концов окупается покупка блока питания с более высоким КПД, даже если изначально он стоит немного дороже.

Второе преимущество состоит в том, что вырабатывается меньше тепла. В нашем первом примере источник питания будет преобразовывать 100 Вт в тепло, а во втором примере тепловыделение упадет до 62,5 Вт, что на 37,5% меньше. Это действительно здорово, и всегда хорошо, когда наши компьютеры работают как можно более прохладно.

Если вы увидите типичную кривую КПД, вы заметите, что КПД зависит от подаваемой мощности. Обычно источник питания достигает максимальной эффективности при передаче от 40% до 60% своей максимальной мощности.КПД также выше, когда источник питания работает от 220 В. См. Реальный пример на рисунке 31.

Рисунок 31: Пример кривой эффективности.

Из-за этого эффекта рекомендуется покупать блок питания с удвоенной мощностью, которую вы фактически собираетесь потреблять. Этим объясняется предложение источников питания с высокой мощностью свыше 700 Вт. Производители не ожидают, что вы получите полную мощность от их блоков, но что вы используете их с нагрузкой около 50% для повышения эффективности.Однако во время наших обзоров нам нужно посмотреть, действительно ли источник питания может обеспечивать указанную мощность, потому что, если источник питания помечен как, скажем, блок мощностью 600 Вт, мы хотим иметь возможность потреблять от него 600 Вт, если мы того пожелаем). Единственным недостатком такого подхода является цена устройства большей мощности. Но в долгосрочной перспективе это хорошая идея, поскольку вы сэкономите деньги на счетах за электроэнергию, ваш компьютер будет работать меньше, у вас будет достаточно места для будущего обновления, и вы не столкнетесь с проблемами стабильности при игре в игры. в их максимальном качестве за часы.Как мы уже упоминали, вы будете удивлены, что большинству систем потребуется блок питания мощностью менее 450 Вт, даже с учетом наших настроек.

Ознакомьтесь с нашей информацией о сертификации 80 Plus, чтобы узнать больше о сертификации эффективности 80 Plus.

[название следующей страницы = «Коррекция коэффициента мощности (PFC)»]

Все оборудование с двигателями и трансформаторами, например, сам источник питания, использует два типа мощности: активную (измеряемую в кВтч) и реактивную (измеряемую в кВАрч). Активная мощность производит настоящую работу, например, вращение оси мотора.Реактивная мощность (также называемая мощностью намагничивания) — это мощность, необходимая для создания магнитных полей, позволяющих выполнять реальную работу с трансформаторами, двигателями и т. Д. Векторная сумма компонентов реактивной мощности и реальной мощности называется полной мощностью и измеряется в кВА · ч. Для промышленных потребителей электроэнергетические компании измеряют и взимают плату на основе полной мощности, но для бытовых и коммерческих потребителей измеренная и заряженная мощность является активной мощностью.

Проблема в том, что, хотя это необходимо для двигателей и трансформаторов, реактивная мощность «занимает место» в системе, которое может быть использовано более активной мощностью.

Коэффициент мощности — это соотношение между активной мощностью и полной мощностью цепи (коэффициент мощности = активная мощность / полная мощность). Это соотношение может варьироваться от 0 (0%) до 1 (100%), и чем ближе этот коэффициент к 1, тем лучше, потому что это означает, что схема потребляет меньше реактивной энергии.

Для оптимизации потребления реактивной мощности во многих странах законодательно установлен максимальный процент реактивной мощности, потребляемой пользователями. Если у потребителя коэффициент мощности ниже значения, установленного правительством (т.е., если реактивная мощность превышает установленный законом предел), заказчик уплачивает штраф.

Концепция штрафов существует для того, чтобы заставить промышленность улучшать коэффициенты мощности, чтобы не допустить использования большего количества реактивной мощности. Как мы уже упоминали, этот тип мощности перегружает систему типом энергии, который используется неэффективно, но необходимо, чтобы двигатели и трансформаторы работали.

Как правило, это усовершенствование включает проверку, нет ли двигателей или трансформаторов, работающих «в холостом режиме» или с превышением размеров.Реактивная мощность, необходимая для работы в «пиковой нагрузке», почти такая же, как и для работы с меньшей нагрузкой. То есть, если двигатель работает с меньшей нагрузкой, он потребляет меньше активной мощности, но его потребление реактивной мощности почти такое же, как если бы он работал при пиковой нагрузке, что приводит к низкому коэффициенту мощности. Обычно обсуждаются и другие вопросы: если уровень тока в сети выше спецификаций и если люминесцентные лампы (для которых требуется реактор, тип трансформатора) используют схемы коррекции мощности, а также установку конденсаторов для коррекции коэффициента мощности (схемы коррекции мощности, наш следующий выпуск) электрической системы.

Многие страны начинают принимать законы, которые обязывают производителей электроэлектронного оборудования, ориентированных на конечных пользователей, соблюдать коэффициент мощности, а также требования промышленных потребителей. С января 2001 года Европейский Союз начал требовать, чтобы все продаваемое в стране электроэлектронное оборудование мощностью более 70 Вт имело схемы коррекции коэффициента мощности, чтобы потреблять как можно меньше реактивной мощности электрической системы. Ожидается, что другие страны начнут принимать такие же меры.

По этой причине производители блоков питания, которые хотели продавать их в Европу с 2001 года, должны были начать производство блоков питания со схемами коррекции коэффициента мощности, которые называются коррекцией коэффициента мощности или просто PFC.

Существует два типа схем коррекции коэффициента мощности: пассивные и активные. В пассивной коррекции коэффициента мощности используются компоненты, для работы которых не требуется питание (например, катушки с ферритовым сердечником), а коэффициент мощности соответствует диапазону от 0,60 (60%) до 0,80 (80%). В активном PFC используются электронные компоненты, такие как интегральные схемы, транзисторы и диоды, и, по заявлению производителей, он способен генерировать коэффициент мощности более 0.95 (95%). Источники питания без схем коррекции коэффициента мощности имеют коэффициент мощности ниже 0,60 (60%).

Коррекция мощности не связана с КПД. Это самая частая ошибка, которую мы видим на рынке; Схема PFC не заставляет ваш компьютер потреблять меньше электроэнергии. Как мы уже объясняли, функция PFC заключается в том, чтобы не допустить, чтобы источник питания потреблял больше реактивной мощности из электрической системы, что приводит к оптимизации электрической сети (позволяя коммунальному предприятию обеспечивать более активную мощность).Внедрение этого типа цепи было создано для выполнения требований законодательства в отношении потребления электроэнергии, в частности, европейского законодательства. Поскольку принятие того же законодательства является тенденцией в других странах, производители готовятся к выпуску источников питания с этим типом схемы.

Честно говоря, нет никаких преимуществ для конечного пользователя, имеющего или не имеющего схему коррекции коэффициента мощности (PFC). Сказать, что источник питания с таким типом схемы лучше, — это маркетинговый ход производителей источников питания, чтобы убедить клиента купить более дорогой источник питания.Фактически, этот тип источника питания лучше подходит для электроэнергетической компании, которая должна обеспечивать меньшую реактивную мощность, что приводит к перегрузке системы. Но для конечного пользователя нет никакой разницы, потому что, по крайней мере, на данный момент мы не перезаряжаемся, если наше потребление реактивной мощности превышает фиксированный уровень, как это происходит с промышленными потребителями. Электроэнергетические компании не взимают плату с непромышленных потребителей за использование этого типа энергии.

На практике блок питания с PFC означает, что производитель может продавать его в Европе.

Как мы упоминали ранее, побочным эффектом источников питания с активным PFC является то, что они работают в «автоматическом режиме», не требуя от вас выбора входного напряжения с помощью переключателя 110/220 В.

[nextpage title = «Стабильность напряжения, шум и пульсации»]

Напряжения на выходах блока питания должны быть как можно ближе к номинальным значениям. Другими словами, мы хотим, чтобы выходы +12 В выдавали +12 В, а не +13 В!

Напряжение имеет тенденцию падать с увеличением нагрузки.Импульсные источники питания представляют собой системы с замкнутым контуром, что означает, что они постоянно считывают значения на выходе и изменяют конфигурацию источника питания на лету, чтобы убедиться, что выходы всегда подают правильное напряжение.

Допустима небольшая разница до 5% для положительных напряжений или до 10% для отрицательных напряжений. См. Таблицу ниже. Напряжение -5 В больше не используется и было размещено здесь только для справки.

Выход Допуск Минимум Максимум
+12 В ± 5% +11.40 В +12,60 В
+ 5 В ± 5% +4,75 В +5,25 В
+ 5ВСБ ± 5% +4,75 В +5,25 В
+3,3 В ± 5% +3,14 В +3,47 В
-12 В ± 10% -13,2 В -10,8 В
-5 В ± 10% -5,25 В -4.75 В

Кроме того, блок питания должен обеспечивать «чистый» выход. В идеальном мире напряжения на выходах источника питания будут рисовать одну горизонтальную линию, если смотреть на них на осциллографе. Но в реальном мире они не совсем прямые; они представляют собой небольшие колебания, называемые рябью. Поверх этого колебания можно увидеть всплески или шум. Пульсации и шум вместе не могут превышать 120 мВ на выходах +12 В и 50 мВ на выходах +5 В и +3.Выходы 3 В. Эти значения представляют собой размах.

Давайте покажем вам несколько примеров, чтобы вы лучше поняли эту концепцию. На рисунке 32 у нас есть выход +12 В PC Power & Cooling Silencer 750 Quad, выдающий 750 Вт. Поскольку наш осциллограф был настроен на 0,02 В / дел, это означает, что каждый зеленый квадрат представляет 0,02 В (20 мВ) на оси y. ось. Уровень шума, измеренный нашим осциллографом, составлял 50 мВ, что далеко от предела 120 мВ. Теперь сравните Рисунок 32 с Рисунок 33. Рисунок 33 — это выход +12 В StarTech.com WattSmart 650 Вт при мощности 650 Вт. Наш осциллограф показал 115,4 мВ. Несмотря на то, что это было (едва) в спецификациях, мы всегда хотим видеть блоки питания с пульсациями и шумом при минимально возможных значениях. Половина максимально допустимого уровня — хороший ориентир.

Рисунок 32: Низкий уровень шума.

Рисунок 33: Высокий уровень шума.

Уровень шума

, безусловно, является тем, о чем большинство пользователей не знают, и его можно проанализировать только с помощью обзоров, подобных тем, которые мы публикуем здесь, в Hardware Secrets.На большинстве веб-сайтов нет осциллографа для проверки источников питания, поэтому они публикуют бесполезные обзоры. (Чтобы лучше обсудить эту тему, прочтите нашу статью Почему 99% обзоров источников питания ошибочны).

[nextpage title = «Несколько шин +12 В»]

Чтобы выполнить требования спецификаций UL 1950, CSA 950, EN 60950 и IEC 950, в спецификации ATX12V указано, что ни один выход не может обеспечивать непрерывную мощность более 240 ВА (240 ВА — это то же самое, что 240 Вт в цепи постоянного тока) .Одна вещь, которую часто неправильно понимают, — это то, что это ограничение на ПРОВОД.

Для правильного выполнения этих стандартов производителям потребуется добавить схему защиты от перегрузки по току (OCP) на каждый выходной провод напряжения источника питания, чтобы сократить ток в этом проводе, если подключенная к нему цепь потребляет более 240 Вт.

Это означает, что блоки питания должны добавить цепь OCP к каждому проводу +12 В, +5 В, +3,3 В, + 5VSB и -12 В, выходящему из блока питания.Из низкопроизводительного блока питания выходит не менее 20 проводов, а у высокопроизводительных — вдвое больше. Подумайте не только о стоимости этого, но и о пространстве, которое эта огромная схема займет внутри источника питания.

Производители решили поиграть с тем фактом, что ток практически никогда не снимается только по одному проводу. Например, ток к системному процессору делится на два (ATX12V) или четыре (EPS12V) провода +12 В, ток к видеокартам делится на три (6-контактный PEG) или четыре (8-контактный PEG) +12 В. провода и т. д.Другими словами, вам понадобится ЦП, потребляющий 480 Вт от разъема ATX12V или 960 Вт от разъема EPS12V, чтобы достичь предела в 240 ВА. Вам потребуется видеокарта, потребляющая 720 Вт от 6-контактного разъема PEG или 960 Вт от 8-контактного разъема PEG, чтобы достичь предела в 240 ВА, и так далее.

Некоторые производители решили внедрить одну схему защиты от перегрузки по току (OCP) для всех проводов +12 В, просто полагая, что маловероятно, что в любой момент времени один провод +12 В будет выдавать более 240 Вт на Блок питания ПК, из-за чего мы объяснили в предыдущем абзаце.Такой подход называется однорельсовой конструкцией. Фактически, некоторые блоки питания, особенно очень бюджетные, вообще не имеют цепи OCP. (Цепи защиты не являются обязательными, о которых мы поговорим подробнее на следующей странице).

Другие производители, полагая, что некоторые провода действительно могут выдавать более 240 Вт при нормальной работе ПК, решили добавить более одной схемы защиты от перегрузки по току (OCP). Каждая группа проводов, подключенная к одной цепи OCP, называется в этом контексте «шиной».Цепь OCP сработает, если эта группа проводов (или «рельс») потребляет больше тока, чем ее точка срабатывания (например, если схема OCP настроена на 20 А, она отключит ток, протекающий по группе проводов, если они вместе тянут больше 20 А).

Они не являются «настоящими рельсами», потому что почти всегда источник питания имеет внутри только одну цепь для генерации выходных сигналов +12 В, и поэтому мы часто называем эти рельсы «виртуальными рельсами».

Этот второй подход называется конструкцией с несколькими направляющими и является наиболее популярной в настоящее время.На блоках питания, использующих эту конструкцию, вы увидите, что на этикетках указано более одной шины +12 В (например, + 12V1, + 12V2, + 12V3 и т. Д.). См. Рисунок 29 для реального примера.

Одним из побочных эффектов конструкции с несколькими рельсами является то, что вам нужно беспокоиться о распределении мощности. Если вы потребляете слишком большой ток / мощность от данной шины, она отключится, если вы достигнете триггерного тока шины OCP, даже если ваш компьютер работает в нормальных условиях. Например, если у вас есть процессор и две видеокарты, подключенные к одной шине.(Решение состоит в том, чтобы переместить хотя бы один из этих компонентов на другую шину.) Это происходит из-за того, что пусковой ток OCP в конструкции с несколькими шинами установлен на более низкое значение по сравнению с конструкцией с одной шиной.

Но обратите пристальное внимание, потому что некоторые источники питания рекламируются как использующие многорельсовую конструкцию, но их защита от перегрузки по току установлена ​​на настолько высокое значение, что она работает так же, как конструкция с одной направляющей. Некоторые устройства вообще не имеют защиты от перегрузки по току и фактически являются однорельсовыми.

Таким образом, однорельсовая конструкция используется в источниках питания только с одной цепью OCP или без нее, в то время как конструкция с несколькими шинами используется в источниках питания с более чем одной цепью OCP.

[nextpage title = «Защита»]

Защита

всегда желательна, но многие люди не знают, что согласно стандартам ATX12V и EPS12V требуются только защита от перенапряжения (OVP), защита от короткого замыкания (SCP) и защита от сверхтока (OCP). . Все остальные средства защиты не являются обязательными, и их реализация зависит от производителя.Конечно, чем больше у блока питания защиты, тем лучше.

Давайте сначала перечислим наиболее распространенные доступные средства защиты. Затем мы расскажем о некоторых интересных фактах.

  • Защита от короткого замыкания (SCP): как следует из названия, она отключит питание, если какой-либо выход закорочен. Это необходимая защита.
  • Защита от пониженного напряжения (UVP): отключает источник питания, если напряжение на любом из выходов устройства падает ниже порогового значения. Это дополнительная защита.
  • Защита от перенапряжения (OVP): отключает источник питания, если напряжение на любом из выходов устройства превышает пороговое значение. Это необходимая защита.
  • Защита от перегрузки по току (OCP): отключает шину, которую он контролирует, если эта шина потребляет ток, превышающий пусковой ток. Это необходимая защита. Прочтите предыдущую страницу для более подробного объяснения этой защиты.
  • Защита от перегрузки по мощности (OPP) или Защита от перегрузки (OLP): отключает источник питания, если вы потребляете от устройства мощность, превышающую триггерный.Это дополнительная защита.
  • Защита от перегрева (OTP): отключает источник питания, если температура внутри источника питания достигает порогового значения. Эта защита встречается не так часто и не является обязательной.

Идея защиты заключается в отключении источника питания в случае возникновения каких-либо неполадок, предотвращая возгорание источника питания и риск возгорания в случае взрыва. Например, если вы потребляете гораздо больше энергии, чем может выдержать блок питания, он может сгореть, если в нем не реализована защита от превышения мощности (OPP).С этой защитой устройство отключится, а не сгорит.

Все защиты настраиваются по усмотрению производителя. Возьмите защиту от перенапряжения (OVP). Стандарты ATX12V и EPS12V предлагают диапазон напряжения, который производитель может использовать для срабатывания этой цепи, но сам производитель должен выбрать, какое значение они будут использовать.

Проблема в том, что некоторые производители устанавливают свои защиты со слишком свободными значениями, что может привести к тому, что что-то случится до того, как сработает соответствующая защита.

ниже — это всего лишь пара реальных примеров, которые мы видели, когда мы перегружали некоторые блоки питания.

Один данный источник питания работал с его напряжениями, полностью выходящими за пределы допустимого диапазона, но источник питания все еще был включен, потому что, хотя напряжения были неправильными, они не достигали уровней, необходимых для активации цепей UVP и OVP.

Другой пример — к сожалению, более распространенный — связан с источниками питания, в которых OCP настроен на настолько высокое значение, что блок питания работает так, как будто в нем вообще нет OCP.То же самое и для цепи OPP.

[nextpage title = ”Pin-Out”]

  • ATX12V v2.x Разъем питания материнской платы
Штифт Цвет Выход
1 Оранжевый + 3,3 В
2 Оранжевый + 3,3 В
3 Черный Земля
4 Красный + 5В
5 Черный Земля
6 Красный + 5В
7 Черный Земля
8 Серый Мощность Хорошо
9 фиолетовый + 5ВСБ
10 желтый + 12В
11 желтый + 12В
12 Оранжевый +3.3 В
13 Оранжевый + 3,3 В
14 Синий -12В
15 Черный Земля
16 Зеленый Включение питания
17 Черный Земля
18 Черный Земля
19 Черный Земля
20 Белый -5В
21 Красный + 5В
22 Красный + 5В
23 Красный + 5В
24 Черный Земля
Штифт Цвет Выход
1 Черный Земля
2 Черный Земля
3 Черный Земля
4 Черный Земля
5 желтый + 12В
6 желтый + 12В
7 желтый + 12В
8 желтый + 12В
Штифт Цвет Выход
1 Черный Земля
2 Черный Земля
3 желтый + 12В
4 желтый + 12В
  • 6-контактный вспомогательный разъем PCI Express (PEG)
Штифт Цвет Выход
1 желтый + 12В
2 * *
3 желтый + 12В
4 Черный Земля
5 Черный Земля
6 Sense0 †

* В спецификации PCI Express сказано, что этот контакт должен быть оставлен неподключенным.Однако в спецификации EPS12V сказано, что этот вывод должен использоваться для +12 В (желтый провод).

† Вывод Sense0 генерирует код для видеокарты, чтобы узнать, какой тип разъема питания доступен. Когда этот контакт заземлен (черный провод) и контакт Sense1 недоступен (что и есть), это означает, что вспомогательный разъем питания является шестиконтактным. Следовательно, у шестиконтактных разъемов этот контакт заземлен.

  • 8-контактный вспомогательный разъем PCI Express (PEG)
Штифт Цвет Выход
1 желтый + 12В
2 желтый + 12В
3 желтый + 12В
4 Sense1 †
5 Черный Земля
6 Черный Земля
7 Черный Земля
8 Sense0 †

† Контакты Sense0 и Sense1 образуют код, который сообщает видеокарте, какой тип разъема питания доступен.Когда оба заземлены (черный провод), это говорит видеокарте, что используется восьмиконтактный разъем. Это причина того, что на восьмиконтактном разъеме контакты четыре и шесть заземлены.

  • Разъем питания Serial ATA
Штифт Цвет Выход
1 Оранжевый + 3,3 В
2 Оранжевый + 3,3 В
3 Оранжевый +3.3 В
4 Черный Земля
5 Черный Земля
6 Черный Земля
7 Красный + 5В
8 Красный + 5В
9 Красный + 5В
10 Черный Земля
11 Черный Земля
12 Черный Земля
13 желтый + 12В
14 желтый + 12В
15 желтый + 12В
  • Разъем периферийного питания
Штифт Цвет Выход
1 желтый + 12В
2 Черный Земля
3 Черный Земля
4 Красный + 5В
  • Разъем питания привода гибких дисков
Штифт Цвет Выход
1 Красный + 5В
2 Черный Земля
3 Черный Земля
4 желтый + 12В
  • ATX12V v1.x / ATX Разъем питания материнской платы
Штифт Цвет Выход
1 Оранжевый + 3,3 В
2 Оранжевый + 3,3 В
3 Черный Земля
4 Красный + 5В
5 Черный Земля
6 Красный + 5В
7 Черный Земля
8 Серый Мощность Хорошо
9 фиолетовый + 5ВСБ
10 желтый + 12В
11 Оранжевый +3.3 В
12 Синий -12В
13 Черный Земля
14 Зеленый Включение питания
15 Черный Земля
16 Черный Земля
17 Черный Земля
18 Белый -5В
19 Красный + 5В
20 Красный + 5В
  • ATX12V v1.x Вспомогательный разъем
Штифт Цвет Выход
1 Черный Земля
2 Черный Земля
3 Черный Земля
4 Оранжевый + 3,3 В
5 Оранжевый +3.3 В
6 Красный + 5В
Штифт Цвет Выход
1 Оранжевый Мощность Хорошо
2 Красный + 5В
3 желтый + 12В
4 Синий -12В
5 Черный Земля
6 Черный Земля
7 Черный Земля
8 Черный Земля
9 Белый -5В
10 Красный + 5В
11 Красный + 5В
12 Красный + 5В

Так что это за ерунда про несколько 12-вольтных шин?


Так что же вся эта чушь про несколько шин на 12 вольт?

Если вы уделяли много внимания современным источникам питания (2006 г.), то вы
наверное заметил, что у большинства из них больше одной шины на 12 вольт.А
Обычный двухконтурный блок питания ATX12V имеет две шины 12 В: 12V1 и
12В2. Согласно ATX
стандартно, 12 В 2 — это шина 12 В, которая питает ЦП и предоставляется
на 4 пин 12 вольт
кабель. 12V1 — это шина 12 В, используемая во всех других
кабели питания и мощности
все, кроме процессора. Некоторые материнские платы не соответствуют стандарту ATX на
что питается от 12В1 и 12В2. Источники питания EPS могут иметь до четырех
Шины на 12 вольт и имеют множество комбинаций шин, питающих какие устройства.

Если блоку питания требуется более 5 Вольт, они просто устанавливают шину большей емкости.
который может подавать больше тока. Так почему вы видите блоки питания с двумя,
три, а то и четыре планки по 12 вольт? Почему бы просто не поставить одну большую шину на 12 вольт
что может обеспечить больше мощности? Ну, это потребует некоторых объяснений.

Раньше я разрабатывал встроенную электронику — небольшие компьютеры, управляющие
различные виды машин. Время от времени я все еще создаю хобби-проекты, так что
У меня есть множество блоков питания.Конечно, большинство из них
«настоящие» блоки питания — не блоки питания для ПК. Хорошо, технически мощность ПК
поставки на самом деле настоящие, но поскольку они идут с такими неполными
спецификации трудно понять, что они действительно могут сделать. Реальные источники питания
точно расскажу, на что способен БП: диапазон входного напряжения, минимум
и максимальный ток, регулировка нагрузки, пульсации на выходе, снижение температуры
кривые, ограничения по напряжению и току. Вы называете это, они это определяют. И
когда говорят, что 12 вольт при 40 ампер при 50 ° C, они не шутят.По крайней мере, как
пока вы избегаете дрянных. Если у блока питания несколько выходов, то они
объясните все зависимости между ними. Итак, если вам нужно увеличить
рейка до 10 ампер, чтобы получить 20 ампер из другой рейки, они всегда говорят вам в
спецификации. Они сообщают вам, есть ли среди комбинаций ограничение общей мощности
рельсов. Если это действительно хороший БП, то там есть нет
зависимости. Они просто работают как независимые рельсы. Характеристики очень
тщательно, потому что вам нужно знать эти вещи, чтобы выбрать правильный блок питания.

А еще есть блоки питания для ПК. Большинство блоков питания для ПК, даже много хороших,
было бы более правдиво, если бы они перестали ссылаться на «спецификации» и использовали
термин «маркетинговый обман». Я не буду здесь углубляться в эту тему
потому что это будет включать страницы и страницы ругательств. И если ты смотришь
для блока питания ПК, который не имеет зависимости между рельсами, сохраните
сновидение. У них есть зависимости. Они просто редко говорят вам, что это такое.
Если вы получите хороший блок питания, он может действительно соответствовать неопределенным и неполным
спецификации на этикетке.Если у вас плохой блок питания, тогда номинальная мощность
этикетку лучше всего можно описать как произведение художественной литературы. Блоки питания ПК
на самом деле есть реальные спецификации. Они их просто не публикуют. Так когда
вы покупаете PC PSU, трудно понять, что у вас на самом деле. Как результат,
части остальной части этой страницы должны быть основаны на предположениях. Было бы
будьте любезны дать вам окончательные ответы, но это трудно сделать, когда вы
точно не знаю, с каким БП вы имеете дело.

Чтобы понять беспорядок в 12-вольтовой шине, вам сначала нужно знать о
три разных типа блоков питания.Не читайте просто о типе
Блок питания, который, по вашему мнению, у вас есть. Есть неплохой шанс, что то, что вы думаете
у вас есть и то, что у вас есть на самом деле — две разные вещи.

Одиночный блок питания на шину 12 В

Один блок питания на шину 12 В имеет только одну выходную цепь, которая генерирует 12
вольт. К нему подключены все различные разъемы, на которые подается 12 вольт.
один выход. Такой блок питания будет отлично работать с современным компьютером, поскольку
пока он может доставить мощность. Это правда, даже если материнская плата
требует дополнительных
4-контактный или
8-контактный 12-вольтовый процессор
разъем или если ваша видеокарта требует
6-контактный PCI-Express
разъем.Если в вашем одиночном блоке питания на 12 В на шину есть все эти дополнительные
разъемы и достаточная мощность, тогда все будет работать правильно.

Несколько независимых шин на 12 В PSU

Блок питания с несколькими независимыми шинами на 12 В имеет более одной шины на 12 В. Каждый
шины на 12 вольт имеет свою отдельную схему. Каждый из 12 вольт
Разъемы питания на кабелях БП подключены к одной из планок на 12 В.
Поскольку это просто блок питания для ПК, а не «настоящий», производители
часто не чувствуют себя обязанными говорить вам, какой разъем к какому
рельс.

Одна из причин использования нескольких отдельных шин на 12 вольт — это улучшить нагрузку.
регулирование и шум на рельсах. Когда вы подключаете активную нагрузку к
шина напряжения вы, как правило, получаете шумную шину, которая много прыгает.
Это не очень хорошее плоское напряжение. Различается. Чем больше активных нагрузок вы подключаете к
ругай все еще грязнее. Итак, сборка блока питания с независимыми шинами на 12 вольт
улучшает «чистоту» питания на каждой рейке. Обычно это только
сделано, если у вас есть схемы, которые крайне требовательны к качеству
его шины напряжения, потому что отдельные шины стоят больше денег, чем одна шина.

Кстати, на случай, если возникнет соблазн подключить независимые шины на 12 вольт
вместе (я видел в Интернете людей, которые думают, что это хорошая идея),
не делай этого. Ваши 12-вольтовые шины могут иметь разные представления о том, какое напряжение
они должны встать на рельсы. Один может немного отличаться от
еще один. В конце концов, это отдельные рельсы, и у них своя схема.
который контролирует напряжение. Они обязательно будут немного отличаться. И если они просто
немного отличается, тогда вы можете потреблять много тока, когда вы их подключаете
вместе, потому что каждая из выходных цепей пытается вызвать напряжение на
одни и те же провода на другое значение.Это вызывает либо хорошее упорядоченное завершение работы
от защиты от перегрузки по току или от дыма и искр. Есть некоторая сила
расходные материалы, в которых есть переключатели, позволяющие соединять рельсы вместе. Один раз
вы правильно установили переключатель, их можно подключить.

Многоканальные шины с ограничением по току 12 В на базе одинарного блока питания

Этот тип блока питания имеет только один набор схем внутри блока питания, который генерирует
12 вольт. Но он разделен на отдельные 12-вольтовые выходы, каждый из которых имеет
их собственная схема ограничения тока.Если любой из 12-вольтных выходов превышает
его текущий предел, тогда блок питания отключается. Например, у вас может быть двойной
рельсовый источник питания, который имеет одну внутреннюю шину 12 В, которая может подавать 30
усилители. Затем внутри блока питания он разделен на две отдельные направляющие, каждая из которых
имеет ограничение в 20 ампер. Если вы попытаетесь получить более 20 ампер от любого из
Рэйл 12 вольт потом БП с выключением. Если вы попытаетесь нарисовать более 30
ампер полного тока от обоих рельсов, тогда он также отключится
(при условии, что внутренняя шина 12 В также имеет ограничитель тока).

Такой вид БП существует из-за стандартов безопасности. В
IED 60950
стандарт ограничивает проводку до 240 ВА (вольт-амперы). При 12 вольт это означает, что
провод может выдерживать максимум 20 ампер. Стандарт существует для
постарайтесь ограничить количество тока, протекающего при коротком замыкании, до
БП отключается. Это может снизить вероятность того, что короткое замыкание вызовет
огонь или уничтожить что-нибудь. Так что, если вашему блоку питания требуется более 20 ампер
на 12 вольт и соблюдайте стандарты безопасности, тогда необходимо иметь более одного
Шина 12 вольт.

Так что это за БП на самом деле?

Можно подумать, что ответ на этот вопрос прост. Имена
три типа блоков питания немного длинноваты, поэтому сократим их до одиночных
12, независимые 12 и ограниченные по току 12. Если только характеристики вашего БП
заявите, что у вас одна шина на 12 вольт, тогда вы знаете, какая из трех
у тебя есть. Но если в спецификациях указано, что у вас две или более шины на 12 вольт
тогда все становится сложнее.

Если посмотреть официальный БП ATX12V
руководство по дизайну, тогда вы найдете
формулировка, которая гласит, что никакая шина не может обеспечить мощность более 240 ВА.Это значит
что шина 12 вольт ограничена до 20 ампер. Никогда не говорится, что блок питания должен
имеют независимые шины на 12 вольт. Независимые шины на 12 вольт будут разрешены
пока они ограничены до 20 ампер, но они не требуются. Это
важно, потому что независимые 12 — это самый дорогой блок питания для
построить. Более дешевый способ соответствовать спецификации ATX12V — производить ограниченный ток
12с. Это экономит деньги, поскольку отдельные рельсовые выходы базируются на едином внутреннем
Шина 12 вольт. А что касается компонентов ПК, они очень стараются сохранить
затраты на минимум.В результате маловероятно, что ваш multi 12
вольт рейка БП фактически независимый 12с. Независимый дизайн 12s
тот, у которого самые чистые 12-вольтовые шины, но ПК, кажется, нормально работают без
их. Большинство нагрузок на шинах 12 В — это двигатели или постоянный / постоянный ток.
конвертеры, и ни один из них не так разборчив в качестве своих
входные напряжения.

Некоторые люди, проводящие тестирование источников питания, сообщают о стабильных успехах в
соединение отдельных шин на 12 В.Как я упоминал ранее, это
очень вероятно, что выполнение этого с независимым 12-секундным блоком питания приведет к короткому
и выключите источник питания. Но соединяя рельсы с током
ограниченный 12-секундный блок питания будет работать нормально, так как на самом деле там только один 12 вольт
регулятор. Тот факт, что подключение 12
вольт-рейки настоятельно предполагают, что они на самом деле ограничены по току 12 с
а не независимые 12. Более того, обзоры БП на
XbitLabs действительно открывается
вверх по блокам питания, чтобы взглянуть на внутреннюю конструкцию.Практически все на ПК
Блоки питания, которые я когда-либо видел в обзоре, были с одним главным трансформатором
конструкции, что означает, что они не имеют независимых шин на 12 В. В
на самом деле, я видел в общей сложности
один блок питания
у которого фактически были независимые шины на 12 вольт. Этот блок питания кажется
на самом деле это серверный блок питания, адаптированный для использования в ПК.
Могут быть и другие независимые блоки питания 12, но если они есть,
они крайне редки. И учитывая экономичную природу ПК
рынок, вы, вероятно, никогда не столкнетесь с одним.

Итак, теперь вы можете предположить, что ваш 12-вольтный сетевой блок питания
ограничено 12сек. Если бы все было так просто. Intel сохраняет
сеть
страницу со списком блоков питания, соответствующих минимальным требованиям.
В этот список включено большое количество источников питания, описанных как
«** Блок питания не соответствовал требованиям 240 ВА во время теста OCP». OCP стенды
для защиты от перегрузки по току. Intel считает, что эти блоки питания соответствуют требованиям
минимальные требования, но они не соответствуют пределу тока 20 А на каждые 12
вольт рейка.Intel, похоже, довольно небрежно относится к ограничению в 240 ВА. Если
проверив спецификации производителя на некоторые из этих блоков питания, вы обнаружите, что
заявленные максимальные токи на их 12-вольтовых шинах значительно ниже 20 ампер
несмотря на то, что их доставили минимум 20. Так что доверять
Максимальный номинальный ток на их шинах 12 В. Некоторые могут доставить больше, чем
в их характеристиках заявлено без отключения максимальной токовой защиты.

Текущие ограниченные 12s более дорогие в производстве, чем одиночные 12, которые
обеспечить такую ​​же общую мощность 12 вольт.Вдобавок ко всему, многие силы
Производители считают, что ограничение тока на шине до 240 ВА
не привел к какому-либо значительному улучшению безопасности блока питания в реальном мире. потом
вы также должны учитывать
сложности с балансировкой нагрузки
вызвано наличием ограниченных по току рельсов.
Все это вызывает подозрение, что многие блоки питания, претендующие на
иметь несколько шин на 12 вольт, на самом деле это один 12 блоков питания, несмотря на то, как они
продается. Согласно результатам тестирования Intel, многие блоки питания
могут подавать намного больше тока на одну шину 12 В, чем их
заявленные спецификации и даже более 20 ампер.Это понятно
что производители блоков питания будут продолжать продавать их как блоки питания с несколькими шинами на 12 В.
так как многие думают, что многопозиционные блоки питания на 12 В на шину лучше одиночных
Блоки питания на шину на 12 В.

Люди, которые проводят тщательные испытания источников питания, довольно много писали о
эта тема. Можете почитать их мнение о том, что это за рейки на 12 вольт
внутри вашего источника питания
Вот,
Вот,
Вот,
Вот,
и внизу
эта страница.
12-вольтные шины, которые есть в вашем источнике питания, могут
влияет на его работу в мощных компьютерах, поэтому, к сожалению,
эта тема так неясна.Информация есть, но ее непросто
найти. Должно быть легко узнать, какие у вас 12-вольтовые шины, но это
не произойдет, пока производители блоков питания не начнут выпускать настоящие спецификации.

Так какой блок питания лучший?

При создании мощной машины с большим количеством оборудования люди часто
сказали, что им надо получить мульти-рейку БП на 12 вольт. Стандартное рассуждение:
что многоканальные блоки питания на 12 шин обеспечивают большую мощность при 12 вольт, чем одиночные 12 вольт
железнодорожные БП.Но это не очень хороший совет. Они пытаются вам сказать
что более новые компьютеры создают большую нагрузку на шину 12 вольт и что вам следует
обязательно приобретите блок питания, обеспечивающий достаточный ток на 12 вольт. Как вы можете
смотрите на этой странице, самая большая нагрузка
на блоке питания со временем сместился с 5 вольт на 12 вольт, так что вам нужно
Будьте осторожны, чтобы выбрать правильный блок питания. Но вам не обязательно брать мульти 12
Rail PSU, чтобы получить большую мощность на 12 вольт. Как вы видели выше,
многие блоки питания, которые претендуют на звание нескольких блоков питания на шину 12 В, на самом деле являются одиночными 12
железнодорожные БП.Они просто продаются как мульти-12, потому что люди думают, что мульти-12
лучше. Настоящая проблема заключается в том, обеспечивает ли блок питания достаточно
общий ток на 12 вольтах (как и на других рельсах) а не то ли
имеет несколько шин на 12 В.

Помните, что независимые блоки питания 12s практически невозможно
найти. Таким образом, у вас есть только два варианта: источник питания с одним внутренним напряжением 12 В.
шина с ограничителями тока для каждой внешней шины (ограничение тока 12 с), или
блок питания с одной внутренней шиной 12 В без ограничителей тока (
одиночный 12).Вы
в итоге получится источник питания только с одной внутренней шиной на 12 В. Ваш
Единственный реальный выбор — получить ли шины с ограничением по току на 12 В. Плохие новости
это то
маркетинговые спецификации для предположительно мульти-блоков питания на шину 12 В
не скажу вам, настоящие ли ограничители тока или нет.

Дело в том, что если вы собираете компьютер высокого класса, блоки питания с
с ограничителями тока справиться проще, чем с источниками питания с током
ограничители.Предположим, вы собираете компьютер, который при полной загрузке
имеет процессор, потребляющий 9 ампер при 12 вольт, и две видеокарты, потребляющие 10
усилителей на штуку при 12. Это одни из самых мощных компонентов, используемых в качестве
2006 года, но люди однозначно строят такие машины. Плюс у вас также есть
жесткие диски и прочее, что добавляет еще 4 ампера при 12 вольт. Если
у вас есть один 12-контактный блок питания, тогда вы должны убедиться, что он может выдержать
12 вольт, всего 33 ампера. Но если у вас есть двойной блок питания на 12 рельсов с
Ограничение 20 ампер на каждой шине 12 В, тогда вы также должны убедиться, что вы
не превышайте 20 ампер на каждой шине.Если вы превысите 20 ампер на шине, то
Блок питания отключится, даже если он поддерживает более 33 ампер. Ты
можно увидеть сложности решения проблемы «балансировки рельсов» на
эта страница. Если вы строите
не мощный компьютер, то маловероятно, что вы приблизитесь к
всего 20 ампер при 12 вольт. В этом случае вам не о чем беспокоиться
об ограничениях на отдельные рельсы. Только мощные компьютеры
потребляйте много тока 12 вольт, что может вызвать проблемы.

Предполагая, что два блока питания имеют одинаковую общую емкость 12 В, вам лучше
от получения одного блока питания на 12-вольтовую рейку, чем от многополюсного блока питания на 12 шт. Электрический ток
Ограничители в 12-шинных блоках питания, по-видимому, не улучшают безопасность, но
они могут сделать вашу жизнь невыносимой при сборке мощного компьютера. В
одиночные блоки питания на 12 В на шину вызывают меньше проблем. К сожалению, большинство БП с
партии на 12 В продаются как блоки питания на 12 шин, даже если они
фактически представляют собой одинарные 12-рельсовые блоки питания.Intel
Страница может помочь идентифицировать блоки питания, у которых нет предела 240 ВА.
Надеюсь, что в будущем вся эта игра с ограничениями по току в 20 ампер будет
просто исчезнет, ​​и жизнь на 12 вольт снова станет простой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *